Jump to content

8000 (number)

From Wikipedia, the free encyclopedia
← 7999 8000 8001 →
Cardinaleight thousand
Ordinal8000th
(eight thousandth)
Factorization26 × 53
Greek numeral,Η´
Roman numeralVMMM, or VIII
Unicode symbol(s)VMMM, vmmm, VIII, viii
Binary11111010000002
Ternary1012220223
Senary1010126
Octal175008
Duodecimal476812
Hexadecimal1F4016
ArmenianՓ

8000 (eight thousand) is the natural number following 7999 and preceding 8001.

8000 is the cube of 20, as well as the sum of four consecutive integers cubed, 113 + 123 + 133 + 143.

The fourteen tallest mountains on Earth, which exceed 8000 meters in height, are sometimes referred to as eight-thousanders.[1]

Selected numbers in the range 8001–8999

[edit]

8001 to 8099

[edit]

8100 to 8199

[edit]

8200 to 8299

[edit]

8300 to 8399

[edit]

8400 to 8499

[edit]

8500 to 8599

[edit]

8600 to 8699

[edit]
  • 8625 – nonagonal number
  • 8646 – triangular number
  • 8649 = 932, centered octagonal number
  • 8658 - sum of the first four perfect numbers (6, 28, 496, 8128) and the product of the culturally significant 666 and 13
  • 8663 – Sophie Germain prime
  • 8693 – Sophie Germain prime
  • 8695 – decagonal number
  • 8699 – safe prime

8700 to 8799

[edit]
  • 8712 – smallest number that is divisible by its reverse: 8712 = 4 × 2178 (excluding palindromes and numbers with trailing zeros)
  • 8713 – balanced prime
  • 8719super-prime
  • 8741 – Sophie Germain prime
  • 8747 – safe prime, balanced prime, super-prime
  • 87483-smooth number (22×37)
  • 8751perfect totient number[13]
  • 8760 - the number of hours in a non-leap year; 365 × 24
  • 8761 – super-prime
  • 8778 – triangular number
  • 8783 – safe prime
  • 8784 - the number of hours in a leap year; 366 × 24

8800 to 8899

[edit]
  • 8801magic constant of n × n normal magic square and n-Queens Problem for n = 26.
  • 8807super-prime, sum of eleven consecutive primes (761 + 769 + 773 + 787 + 797 + 809 + 811 + 821 + 823 + 827 + 829)
  • 8819 – safe prime
  • 8833 = 882 + 332
  • 8836 = 942
  • 8839 – sum of twenty-three consecutive primes (313 + 317 + 331 + 337 + 347 + 349 + 353 + 359 + 367 + 373 + 379 + 383 + 389 + 397 + 401 + 409 + 419 + 421 + 431 + 433 + 439 + 443 + 449)
  • 8849super-prime
  • 8855 – member of a Ruth-Aaron pair (first definition) with 8856
  • 8856 – member of a Ruth-Aaron pair (first definition) with 8855
  • 8888 - repdigit

8900 to 8999

[edit]

Prime numbers

[edit]

There are 110 prime numbers between 8000 and 9000:[15][16]

8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999

References

[edit]
  1. ^ Voiland, Adam (16 December 2013). "The Eight-Thousanders". The Earth Observatory. NASA. Retrieved 12 September 2016.
  2. ^ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  3. ^ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A005188 (Armstrong (or Plus Perfect, or narcissistic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A050217 (Super-Poulet numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A049363 (a(1) = 1; for n > 1, smallest digitally balanced number in base n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ Sloane, N. J. A. (ed.). "Sequence A006879 (Number of primes with n digits.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A002997 (Carmichael numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.