Jump to content

	
		
			
				

	
	

Main menu
	
	

				
		

	
	Main menu

	move to sidebar
	hide

	

	
		Navigation
	

	
		
			Main page
	Contents
	Current events
	Random article
	About Wikipedia
	Contact us
	Donate

		
	

	
	

	
		Contribute
	

	
		
			Help
	Learn to edit
	Community portal
	Recent changes
	Upload file

		
	

				

	

		
			

	[image:]
	
		[image: Wikipedia]
		[image: The Free Encyclopedia]
	

		

		
			

	

Search
	
	
		
			
				
					
						
						
					

					
				

				Search
			

		

	

			
	
	

	
		
		

		
	

	

	
		
		

		
	

	
		
		
	
	

	
		
		

		
	

	

	
		
			Create account

	Log in

		
	

	

	

	
	

Personal tools
	
	

		

	
		
			 Create account
	 Log in

		
	

	
		Pages for logged out editors learn more
	

	
		
			Contributions
	Talk

		
	

	
	

		

	

	
		
			

		

		
			
		
			
				
				
				

		
		

	

	
				
					
					
	
	Contents

	move to sidebar
	hide

		
			
				(Top)

			
		
	
		
			
			1Overview

		
		
			
				
				Toggle Overview subsection
			
		
			
			
				
				1.1Advantages

			
			
			

		
	
			
				
				1.2Disadvantages

			
			
			

		
	
			
				
				1.3Comparison with message passing

			
			
			

		

	
	
		
			
			2Directory memory coherence

		
		
			
				
				Toggle Directory memory coherence subsection
			
		
			
			
				
				2.1States

			
			
			

		
	
			
				
				2.2Home-centric request and response

			
			
			

		
	
			
				
				2.3Requester-centric request and response

			
			
			

		

	
	
		
			
			3Consistency models

		
		
		

	
	
		
			
			4Replication

		
		
		

	
	
		
			
			5Release and entry consistency

		
		
			
				
				Toggle Release and entry consistency subsection
			
		
			
			
				
				5.1Examples

			
			
			

		

	
	
		
			
			6See also

		
		
		

	
	
		
			
			7References

		
		
		

	
	
		
			
			8External links

		
		
		

	

					

		
			

		

		
			
				
					
						

	
	

Toggle the table of contents
	
	

							
			

		
	

					
					Distributed shared memory

							

	
	

8 languages
	
	

		
			
				العربية
	Български
	Deutsch
	Español
	فارسی
	日本語
	Српски / srpski
	中文

			Edit links

		

	

				
					
						
							
								

	
		
			Article
	Talk

		
	

								

	
	English
	
	

					

	
		
		

		
	

				
	

							
						

						
							
								

	
		
			Read
	Edit
	View history

		
	

							
				
							
								

	
	Tools
	
	

									
						

	
	Tools

	move to sidebar
	hide

	

	
		Actions
	

	
		
			Read
	Edit
	View history

		
	

	
		General
	

	
		
			What links here
	Related changes
	Upload file
	Special pages
	Permanent link
	Page information
	Cite this page
	Get shortened URL
	Download QR code
	Wikidata item

		
	

	
		Print/export
	

	
		
			Download as PDF
	Printable version

		
	

									

				
	

							
						

					

				

				
					
						
							
				
							

		
						
						
					

				

				
					
							
		

						From Wikipedia, the free encyclopedia

					

					

					
					
						[image:]
	This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Distributed shared memory" – news · newspapers · books · scholar · JSTOR (January 2022) (Learn how and when to remove this template message)

"DGAS" redirects here. For the DGA awards, see Directors Guild of America Award.

In computer science, distributed shared memory (DSM) is a form of memory architecture where physically separated memories can be addressed as a single shared address space. The term "shared" does not mean that there is a single centralized memory, but that the address space is shared—i.e., the same physical address on two processors refers to the same location in memory.[1]: 201  Distributed global address space (DGAS), is a similar term for a wide class of software and hardware implementations, in which each node of a cluster has access to shared memory in addition to each node's private (i.e., not shared) memory.

Overview[edit]

[image:]
A distributed-memory system, often called a multicomputer, consists of multiple independent processing nodes with local memory modules which is connected by a general interconnection network. Software DSM systems can be implemented in an operating system, or as a programming library and can be thought of as extensions of the underlying virtual memory architecture. When implemented in the operating system, such systems are transparent to the developer; which means that the underlying distributed memory is completely hidden from the users. In contrast, software DSM systems implemented at the library or language level are not transparent and developers usually have to program them differently. However, these systems offer a more portable approach to DSM system implementations. A DSM system implements the shared-memory model on a physically distributed memory system.

DSM can be achieved via software as well as hardware. Hardware examples include cache coherence circuits and network interface controllers. There are three ways of implementing DSM:

	Page-based approach using virtual memory
	Shared-variable approach using routines to access shared variables
	Object-based approach, ideally accessing shared data through object-oriented discipline

Advantages[edit]

	Scales well with a large number of nodes
	Message passing is hidden
	Can handle complex and large databases without replication or sending the data to processes
	Generally cheaper than using a multiprocessor system
	Provides large virtual memory space
	Programs are more portable due to common programming interfaces
	Shield programmers from sending or receiving primitives

Disadvantages[edit]

	Generally slower to access than non-distributed shared memory
	Must provide additional protection against simultaneous accesses to shared data
	May incur a performance penalty
	Little programmer control over actual messages being generated
	Programmers need to understand consistency models to write correct programs

Comparison with message passing[edit]

	Message passing
	Distributed shared memory

	Variables have to be marshalled
	Variables are shared directly

	Cost of communication is obvious
	Cost of communication is invisible

	Processes are protected by having private address space
	Processes could cause error by altering data

	Processes should execute at the same time
	Executing the processes may happen with non-overlapping lifetimes

Software DSM systems also have the flexibility to organize the shared memory region in different ways. The page based approach organizes shared memory into pages of fixed size. In contrast, the object based approach organizes the shared memory region as an abstract space for storing shareable objects of variable sizes. Another commonly seen implementation uses a tuple space, in which the unit of sharing is a tuple.

Shared memory architecture may involve separating memory into shared parts distributed amongst nodes and main memory; or distributing all memory between nodes. A coherence protocol, chosen in accordance with a consistency model, maintains memory coherence.

Directory memory coherence[edit]

Memory coherence is necessary such that the system which organizes the DSM is able to track and maintain the state of data blocks in nodes across the memories comprising the system. A directory is one such mechanism which maintains the state of cache blocks moving around the system.

States[edit]

[image: State diagram of a block of memory in a DSM. A block is "owned" if one of the nodes has the block in state EM.]State diagram of a block of memory in a DSM. A block is "owned" if one of the nodes has the block in state EM.
A basic DSM will track at least three states among nodes for any given block in the directory.[2] There will be some state to dictate the block as uncached (U), a state to dictate a block as exclusively owned or modified owned (EM), and a state to dictate a block as shared (S). As blocks come into the directory organization, they will transition from U to EM (ownership state) in the initial node. The state can transition to S when other nodes begin reading the block.

There are two primary methods for allowing the system to track where blocks are cached and in what condition across each node. Home-centric request-response uses the home to service requests and drive states, whereas requester-centric allows each node to drive and manage its own requests through the home.

Home-centric request and response[edit]

In a home-centric system, the DSM will avoid having to handle request-response races between nodes by allowing only one transaction to occur at a time until the home node has decided that the transaction is finished—usually when the home has received every responding processor's response to the request. An example of this is Intel's QPI home-source mode.[3] The advantages of this approach are that it's simple to implement but its request-response strategy is slow and buffered due to the home node's limitations.

Requester-centric request and response[edit]

In a requester-centric system, the DSM will allow nodes to talk at will to each other through the home. This means that multiple nodes can attempt to start a transaction, but this requires additional considerations to ensure coherence. For example: when one node is processing a block, if it receives a request for that block from another node it will send a NAck (Negative Acknowledgement) to tell the initiator that the processing node can't fulfill that request right away. An example of this is Intel's QPI snoop-source mode.[3] This approach is fast but it does not naturally prevent race conditions and generates more bus traffic.

Consistency models[edit]

The DSM must follow certain rules to maintain consistency over how read and write order is viewed among nodes, called the system's consistency model.

Suppose we have n processes and Mi memory operations for each process i, and that all the operations are executed sequentially. We can conclude that (M1 + M2 + … + Mn)!/(M1! M2!… Mn!) are possible interleavings of the operations. The issue with this conclusion is determining the correctness of the interleaved operations. Memory coherence for DSM defines which interleavings are permitted.

[image: Sequential invocations and responses in DSM]Sequential invocations and responses in DSM
Replication[edit]

There are two types of replication Algorithms. Read replication and Write replication.
In Read replication multiple nodes can read at the same time but only one node can write.
In Write replication multiple nodes can read and write at the same time. The write requests
are handled by a sequencer.
Replication of shared data in general tends to:

	Reduce network traffic
	Promote increased parallelism
	Result in fewer page faults

However, preserving coherence and consistency may become more challenging.

Release and entry consistency[edit]

	Release consistency: when a process exits a critical section, new values of the variables are propagated to all sites.
	Entry consistency: when a process enters a critical section, it will automatically update the values of the shared variables.
	View-based Consistency: it is a variant of Entry Consistency, except the shared variables of a critical section are automatically detected by the system. An implementation of view-based consistency is VODCA Archived 2016-02-15 at the Wayback Machine which has comparable performance to MPI on cluster computers.

Examples[edit]

	Kerrighed
	Open SSI
	MOSIX
	TreadMarks
	VODCA Archived 2016-02-15 at the Wayback Machine
	DIPC

See also[edit]

	Distributed cache – Type of computer cache
	Memory virtualization – Computer science term
	Single-system image – Cluster dedicated operating systemPages displaying short descriptions of redirect targets
	Remote direct memory access – Low-level hardware direct memory access

References[edit]

	^ Patterson, David A.; Hennessy, John L. (2006). Computer Architecture: A Quantitative Approach (4th ed.). Burlington, Massachusetts: Morgan Kaufmann. ISBN 978-01-2370490-0.

	^
Solihin, Yan (2015). Fundamentals of Parallel Multicore Architecture. Boca Raton, Florida: Chapman and Hall/CRC. pp. 339–340. ISBN 9781482211184.

	^ a b
Sorin, Daniel J.; Hill, Mark D.; Wood, David A. (2011). A Primer on Memory Consistency and Cache Coherence. Morgan & Claypool. p. 174. ISBN 978-16-0845564-5.

External links[edit]

	Distributed Shared Cache
	Memory coherence in shared virtual memory systems by Kai Li, Paul Hudak published in ACM Transactions on Computer Systems, Volume 7 Issue 4, Nov. 1989

	
	v
	t
	e

Parallel computing

	General	
	Distributed computing
	Parallel computing
	Massively parallel
	Cloud computing
	High-performance computing
	Multiprocessing
	Manycore processor
	GPGPU
	Computer network
	Systolic array

	Levels	
	Bit
	Instruction
	Thread
	Task
	Data
	Memory
	Loop
	Pipeline

	Multithreading	
	Temporal
	Simultaneous (SMT)
	Simultaneous and heterogenous
	Speculative (SpMT)
	Preemptive
	Cooperative
	Clustered multi-thread (CMT)
	Hardware scout

	Theory	
	PRAM model
	PEM model
	Analysis of parallel algorithms
	Amdahl's law
	Gustafson's law
	Cost efficiency
	Karp–Flatt metric
	Slowdown
	Speedup

	Elements	
	Process
	Thread
	Fiber
	Instruction window
	Array

	Coordination	
	Multiprocessing
	Memory coherence
	Cache coherence
	Cache invalidation
	Barrier
	Synchronization
	Application checkpointing

	Programming	
	Stream processing
	Dataflow programming
	Models
	Implicit parallelism
	Explicit parallelism
	Concurrency

	Non-blocking algorithm

	Hardware	
	Flynn's taxonomy
	SISD
	SIMD
	Array processing (SIMT)
	Pipelined processing
	Associative processing

	MISD
	MIMD

	Dataflow architecture
	Pipelined processor
	Superscalar processor
	Vector processor
	Multiprocessor
	symmetric
	asymmetric

	Memory
	shared
	distributed
	distributed shared
	UMA
	NUMA
	COMA

	Massively parallel computer
	Computer cluster
	Beowulf cluster

	Grid computer
	Hardware acceleration

	APIs	
	Ateji PX
	Boost
	Chapel
	HPX
	Charm++
	Cilk
	Coarray Fortran
	CUDA
	Dryad
	C++ AMP
	Global Arrays
	GPUOpen
	MPI
	OpenMP
	OpenCL
	OpenHMPP
	OpenACC
	Parallel Extensions
	PVM
	pthreads
	RaftLib
	ROCm
	UPC
	TBB
	ZPL

	Problems	
	Automatic parallelization
	Deadlock
	Deterministic algorithm
	Embarrassingly parallel
	Parallel slowdown
	Race condition
	Software lockout
	Scalability
	Starvation

	
	[image:] Category: Parallel computing

[image:]

Retrieved from "https://en.wikipedia.org/w/index.php?title=Distributed_shared_memory&oldid=1203102635"

					Category: 	Distributed computing architecture

Hidden categories: 	Articles needing additional references from January 2022
	All articles needing additional references
	Webarchive template wayback links
	Pages displaying short descriptions of redirect targets via Module:Annotated link

				
			
			
		
		
			

		 This page was last edited on 4 February 2024, at 05:46 (UTC).
	Text is available under the Creative Commons Attribution-ShareAlike License 4.0;
additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

		Privacy policy
	About Wikipedia
	Disclaimers
	Contact Wikipedia
	Code of Conduct
	Developers
	Statistics
	Cookie statement
	Mobile view

		[image: Wikimedia Foundation]
	[image: Powered by MediaWiki]

		

	

		
		

Toggle limited content width

