Jump to content

Icosidodecahedron

From Wikipedia, the free encyclopedia
Icosidodecahedron

(Click here for rotating model)
Type Archimedean solid
Uniform polyhedron
Elements F = 32, E = 60, V = 30 (χ = 2)
Faces by sides 20{3}+12{5}
Conway notation aD
Schläfli symbols r{5,3}
t1{5,3}
Wythoff symbol 2 | 3 5
Coxeter diagram
Symmetry group Ih, H3, [5,3], (*532), order 120
Rotation group I, [5,3]+, (532), order 60
Dihedral angle
References U24, C28, W12
Properties Semiregular convex quasiregular

Colored faces

3.5.3.5
(Vertex figure)

Rhombic triacontahedron
(dual polyhedron)

Net
3D model of an icosidodecahedron

In geometry, an icosidodecahedron is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

Construction[edit]

One way to construct the icosidodecahedron is to start with two pentagonal rotunda by attaching them onto their bases. These rotundas cover their decagonal base so that the resulting polyhedron has 32 faces, 30 vertices, and 60 edges. This construction is similar to one of the Johnson solids, the pentagonal orthobirotunda; the difference is that the icosidodecahedron is constructed by twisting its rotundas by 36°, making the pentagonal faces connect to the triangular one. Because of this, the icosidodecahedron may have an alternative name, pentagonal gyrobirotunda.[1][2]

The difference between icosidodecahedron and pentagonal orthobirotunda, and its dissection.

Convenient Cartesian coordinates for the vertices of an icosidodecahedron with unit edges are given by the even permutations of:

where denotes the golden ratio.[3]

Properties[edit]

The surface area of an icosidodecahedron can be determined by calculating the area of all pentagonal faces. The volume of an icosidodecahedron can be determined by slicing it off into two pentagonal rotunda, after which summing up their volumes. Therefore, its surface area and volume can be formulated as:[1]

The dihedral angle of an icosidodecahedron between pentagon-to-triangle is

determined by calculating the angle of a pentagonal rotunda.[4]

An icosidodecahedron has icosahedral symmetry, and its first stellation is the compound of a dodecahedron and its dual icosahedron, with the vertices of the icosidodecahedron located at the midpoints of the edges of either.

The icosidodecahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex.[5] The polygonal faces that meet for every vertex are two equilateral triangles and two regular pentagons, and the vertex figure of an icosidodecahedron is . Its dual polyhedron is rhombic triacontahedron, a Catalan solid.[4]

The 60 edges form 6 decagons corresponding to great circles in the spherical tiling.

The icosidodecahedron has 6 central decagons. Projected into a sphere, they define 6 great circles. Fuller (1975) used these 6 great circles, along with 15 and 10 others in two other polyhedra to define his 31 great circles of the spherical icosahedron.[6]

The long radius (center to vertex) of the icosidodecahedron is in the golden ratio to its edge length; thus its radius is if its edge length is 1, and its edge length is if its radius is 1.[4] Only a few uniform polytopes have this property, including the four-dimensional 600-cell, the three-dimensional icosidodecahedron, and the two-dimensional decagon. (The icosidodecahedron is the equatorial cross-section of the 600-cell, and the decagon is the equatorial cross-section of the icosidodecahedron.) These radially golden polytopes can be constructed, with their radii, from golden triangles which meet at the center, each contributing two radii and an edge.

Orthogonal projections[edit]

The icosidodecahedron has four special orthogonal projections, centered on a vertex, an edge, a triangular face, and a pentagonal face. The last two correspond to the A2 and H2 Coxeter planes.

Orthogonal projections
Centered by Vertex Edge Face
Triangle
Face
Pentagon
Solid
Wireframe
Projective
symmetry
[2] [2] [6] [10]
Dual

Related polytopes[edit]

The icosidodecahedron is a rectified dodecahedron and also a rectified icosahedron, existing as the full-edge truncation between these regular solids.

The icosidodecahedron contains 12 pentagons of the dodecahedron and 20 triangles of the icosahedron:

Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

The icosidodecahedron exists in a sequence of symmetries of quasiregular polyhedra and tilings with vertex configurations (3.n)2, progressing from tilings of the sphere to the Euclidean plane and into the hyperbolic plane. With orbifold notation symmetry of *n32 all of these tilings are wythoff construction within a fundamental domain of symmetry, with generator points at the right angle corner of the domain.[7][8]

*n32 orbifold symmetries of quasiregular tilings: (3.n)2

Construction
Spherical Euclidean Hyperbolic
*332 *432 *532 *632 *732 *832... *∞32
Quasiregular
figures
Vertex (3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)2 (3.8)2 (3.∞)2
*5n2 symmetry mutations of quasiregular tilings: (5.n)2
Symmetry
*5n2
[n,5]
Spherical Hyperbolic Paracompact Noncompact
*352
[3,5]
*452
[4,5]
*552
[5,5]
*652
[6,5]
*752
[7,5]
*852
[8,5]...
*∞52
[∞,5]
 
[ni,5]
Figures
Config. (5.3)2 (5.4)2 (5.5)2 (5.6)2 (5.7)2 (5.8)2 (5.∞)2 (5.ni)2
Rhombic
figures
Config. V(5.3)2 V(5.4)2 V(5.5)2 V(5.6)2 V(5.7)2 V(5.8)2 V(5.∞)2 V(5.∞)2

Related polyhedra[edit]

A topological icosidodecahedron in truncated cube, inserting 6 vertices in center of octagons, and dissecting them into 2 pentagons and 2 triangles.

The truncated cube can be turned into an icosidodecahedron by dividing the octagons into two pentagons and two triangles. It has pyritohedral symmetry.

Eight uniform star polyhedra share the same vertex arrangement. Of these, two also share the same edge arrangement: the small icosihemidodecahedron (having the triangular faces in common), and the small dodecahemidodecahedron (having the pentagonal faces in common). The vertex arrangement is also shared with the compounds of five octahedra and of five tetrahemihexahedra.


Icosidodecahedron

Small icosihemidodecahedron

Small dodecahemidodecahedron

Great icosidodecahedron

Great dodecahemidodecahedron

Great icosihemidodecahedron

Dodecadodecahedron

Small dodecahemicosahedron

Great dodecahemicosahedron

Compound of five octahedra

Compound of five tetrahemihexahedra

Related polychora[edit]

In four-dimensional geometry the icosidodecahedron appears in the regular 600-cell as the equatorial slice that belongs to the vertex-first passage of the 600-cell through 3D space. In other words: the 30 vertices of the 600-cell which lie at arc distances of 90 degrees on its circumscribed hypersphere from a pair of opposite vertices, are the vertices of an icosidodecahedron. The wire frame figure of the 600-cell consists of 72 flat regular decagons. Six of these are the equatorial decagons to a pair of opposite vertices. They are precisely the six decagons which form the wire frame figure of the icosidodecahedron.

If a 600-cell is stereographically projected to 3-space about any vertex and all points are normalised, the geodesics upon which edges fall comprise the icosidodecahedron's barycentric subdivision.

Icosidodecahedral graph[edit]

Icosidodecahedral graph
5-fold symmetry Schlegel diagram
Vertices30
Edges60
Automorphisms120
PropertiesQuartic graph, Hamiltonian, regular
Table of graphs and parameters

In the mathematical field of graph theory, a icosidodecahedral graph is the graph of vertices and edges of the icosidodecahedron, one of the Archimedean solids. It has 30 vertices and 60 edges, and is a quartic graph Archimedean graph.[9]

Appearance[edit]

The icosidodecahedron may appears in structural, as in the geodesic dome of the Hoberman sphere.

Icosidodecahedra can be found in all eukaryotic cells, including human cells, as Sec13/31 COPII coat-protein formations.[10]

The icosidodecahedron may also found in popular culture. In Star Trek universe, the Vulcan game of logic Kal-Toh has the goal of creating a shape with two nested holographic icosidodecahedra joined at the midpoints of their segments.

See also[edit]

References[edit]

  1. ^ a b Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  2. ^ Ogievetsky, O.; Shlosman, S. (2021). "Platonic compounds and cylinders". In Novikov, S.; Krichever, I.; Ogievetsky, O.; Shlosman, S. (eds.). Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry. American Mathematical Society. p. 477. ISBN 978-1-4704-5592-7.
  3. ^ Weisstein, Eric W. "Icosahedral group". MathWorld.
  4. ^ a b c Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. p. 86. ISBN 978-0-486-23729-9.
  5. ^ Diudea, M. V. (2018). Multi-shell Polyhedral Clusters. Carbon Materials: Chemistry and Physics. Vol. 10. Springer. p. 39. doi:10.1007/978-3-319-64123-2. ISBN 978-3-319-64123-2.
  6. ^ Fuller, R. B. (1975). Synergetics: Explorations in the Geometry of Thinking. MacMillan. p. 183–185.
  7. ^ Coxeter Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter V: The Kaleidoscope, Section: 5.7 Wythoff's construction)
  8. ^ Two Dimensional symmetry Mutations by Daniel Huson
  9. ^ Read, R. C.; Wilson, R. J. (1998), An Atlas of Graphs, Oxford University Press, p. 269
  10. ^ Russell, Christopher; Stagg, Scott (11 February 2010). "New Insights into the Structural Mechanisms of the COPII Coat". Traffic. 11 (3): 303–310. doi:10.1111/j.1600-0854.2009.01026.x. PMID 20070605.
  • Cromwell, P. (1997). Polyhedra. United Kingdom: Cambridge. pp. 79–86 Archimedean solids. ISBN 0-521-55432-2.

External links[edit]