Timeline of gravitational physics and relativity

From Wikipedia, the free encyclopedia

The following is a timeline of gravitational physics and general relativity.

Before 1500[edit]

1500s[edit]

1600s[edit]

Geometric diagram for Newton's proof of Kepler's second law.

1700s[edit]

Lagrange points

1800s[edit]

1900s[edit]

The U.S. Navy's nuclear-powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean, 1964.

1910s[edit]

Einstein's 1911 argument for gravitational redshift

1920s[edit]

1930s[edit]

The Einstein Cross, an example of gravitational lensing at work

1940s[edit]

1950s[edit]

1960s[edit]

1970s[edit]

Image of Cygnus X-1 by the Chandra X-ray Observatory (2009)

1980s[edit]

1990s[edit]

Parameter space of various approximation techniques in general relativity

2000s[edit]

2010s[edit]

Improving cosmological measurements by three different satellites

2020s[edit]

The size of Sagittarius A* is smaller than the orbit of Mercury.

See also[edit]

References[edit]

  1. ^ a b Bauer, Susan Wise (2015). "Chapter Seven: The Last Ancient Astronomer". The Story of Science from the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN 978-0-393-24326-0.
  2. ^ Gribbin, John (2003). "Chapter 3: The First Scientists". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 76–7. ISBN 978-1-400-06013-9.
  3. ^ a b Pasachoff, Naomi; Pasachoff, Jay (2012). "Galileo Galilei". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN 978-0-500-25191-1.
  4. ^ a b Dolnick, Edward (2011). "Timeline". The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World. New York: Harper Collins. ISBN 9780061719516.
  5. ^ Bauer, Susan Wise (2015). "Chapter Ten: The Death of Aristotle". The Story of Science: From the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN 978-0-393-24326-0.
  6. ^ a b Iliffe, Rob (2012). "Isaac Newton". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN 978-0-500-25191-1.
  7. ^ a b Newton, Isaac (1999). The Principia: The Authoritative Translation and Guide. Translated by Cohen, I. Bernard; Whitman, Anne; Budenz, Julia. University of California Press. ISBN 978-0-520-29088-4.
  8. ^ Kleppner, Daniel; Kolenkow, Robert J. (1973). "8.4: The Principle of Equivalence". An Introduction to Mechanics. McGraw-Hill. pp. 353–54. ISBN 0-07-035048-5.
  9. ^ Halley, Edmund (1705). A synopsis of the astronomy of comets. Oxford: John Senex. Retrieved 16 June 2020 – via Internet Archive.
  10. ^ Sagan, Carl; Druyan, Ann (1997). Comet. New York: Random House. pp. 66–67. ISBN 978-0-3078-0105-0.
  11. ^ De mundi systemate, Isaac Newton, London: J. Tonson, J. Osborn, & T. Longman, 1728.
  12. ^ Newton, Isaac; Cohen, I. Bernard (2004-01-01). A Treatise of the System of the World. Courier Corporation. ISBN 978-0-486-43880-1.
  13. ^ Maclaurin, Colin. A Treatise of Fluxions: In Two Books. 1. Vol. 1. Ruddimans, 1742.
  14. ^ Chandrasekhar, Subrahmanyan (1969). "5: The Maclaurin Spheroids". Ellipsoidal Figures of Equilibrium. New Haven: Yale University Press. ISBN 978-0-30001-116-6.
  15. ^ a b Woolfson, M.M. (1993). "Solar System – its origin and evolution". Q. J. R. Astron. Soc. 34: 1–20. Bibcode:1993QJRAS..34....1W. For details of Kant's position, see Stephen Palmquist, "Kant's Cosmogony Re-Evaluated", Studies in History and Philosophy of Science 18:3 (September 1987), pp.255–269.
  16. ^ Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D. (2006). Dynamical Systems, the Three-Body Problem, and Space Mission Design. p. 9. Archived from the original on 2008-05-27. Retrieved 2008-06-09. (16MB)
  17. ^ Euler, Leonhard (1765). De motu rectilineo trium corporum se mutuo attrahentium (PDF).
  18. ^ Euler L, Nov. Comm. Acad. Imp. Petropolitanae, 10, pp. 207–242, 11, pp. 152–184; Mémoires de l'Acad. de Berlin, 11, 228–249.
  19. ^ Lagrange, Joseph-Louis (1867–92). "Tome 6, Chapitre II: Essai sur le problème des trois corps". Œuvres de Lagrange (in French). Gauthier-Villars. pp. 229–334.
  20. ^ Cavendish, Henry (1798). "Experiments to Determine the Density of Earth". Philosophical Transactions of the Royal Society. 88: 469–526. doi:10.1098/rstl.1798.0022. JSTOR 106988.
  21. ^ Clotfelter, B.E. (1987). "The Cavendish Experiment as Cavendish Knew It". American Journal of Physics. 55 (3): 210–213. Bibcode:1987AmJPh..55..210C. doi:10.1119/1.15214.
  22. ^ s:On the Space Theory of Matter
  23. ^ Michaelson, Albert A.; Morley, Edward W. (1887). "On the Relative Motion of the Earth and the Luminiferous Ether". American Journal of Science. 134 (333): 333–345. Bibcode:1887AmJS...34..333M. doi:10.2475/ajs.s3-34.203.333. S2CID 124333204.
  24. ^ French, A. P. (1968). "Chapter 2: Perplexities in the Propagation of Light". Special Relativity. New York: W. W. Norton & Company. pp. 52–58. ISBN 0-393-09793-5.
  25. ^ Bod, L.; Fischbach, E.; Marx, G.; Náray-Ziegler, Maria (31 Aug 1990). "One Hundred Years of the Eötvös Experiment". Archived from the original on October 22, 2012.
  26. ^ Gerber, P. (1917) [1902]. "Die Fortpflanzungsgeschwindigkeit der Gravitation". Annalen der Physik. 52 (4): 415–444. Bibcode:1917AnP...357..415G. doi:10.1002/andp.19173570404. (Originally published in Programmabhandlung des städtischen Realgymnasiums zu Stargard i. Pomm., 1902)
  27. ^ a b Robinson, Andrew (2012). "Albert Einstein". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN 978-0-500-25191-1.
  28. ^ Einstein, Albert (1905). "Zur Elektrodynamik bewegter Körper" [On the Electrodynamics of Moving Bodies] (PDF). Annalen der Physik. Series 4. 17 (10): 891–921. Bibcode:1905AnP...322..891E. doi:10.1002/andp.19053221004.
  29. ^ Einstein, Albert (1905). "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" [Does the Inertia of a Body Depend upon its Energy Content?] (PDF). Annalen der Physik. Series 4. 18 (13): 639–641. Bibcode:1905AnP...323..639E. doi:10.1002/andp.19053231314. S2CID 122309633.
  30. ^ Einstein, Albert (1935). "Elementary derivation of the equivalence of mass and energy" (PDF). Bulletin of the American Mathematical Society. 41 (4): 223–230. doi:10.1090/S0002-9904-1935-06046-X.
  31. ^ Hecht, Eugene (2011). "How Einstein Confirmed ". American Journal of Physics. 79: 591–600. doi:10.1119/1.3549223.
  32. ^ Einstein, Albert (1907). "Relativitätsprinzip und die aus demselben gezogenen Folgerungen" [On the Relativity Principle and the Conclusions Drawn from It] (PDF). Jahrbuch der Radioaktivität (4): 411–462.
  33. ^ Eddington, A. S. (1926). "Einstein Shift and Doppler Shift". Nature. 117 (2933): 86. Bibcode:1926Natur.117...86E. doi:10.1038/117086a0. ISSN 1476-4687. S2CID 4092843.
  34. ^ Minkowski, Hermann (1915). "Das Relativitätsprinzip". Annalen der Physik. 352 (15): 927–938. Bibcode:1915AnP...352..927M. doi:10.1002/andp.19153521505.
  35. ^ Corry, Leo (1997). "Hermann Minkowski and the Postulate of Relativity" (PDF). Archive for History of Exact Sciences. 51 (4): 273–314. doi:10.1007/BF00518231. S2CID 27016039.
  36. ^ Gribbin, John (2004). "11. Let There be Light". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 440–1. ISBN 978-0-812-96788-3.
  37. ^ Born, Max (1909). "Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips" [The theory of the rigid electron in the kinematics of the principle of relativity]. Annalen der Physik (in German). 355 (11): 1–56. Bibcode:1909AnP...335....1B. doi:10.1002/andp.19093351102.
  38. ^ Born, Max (1909). "Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips". Physikalische Zeitschrift. 10: 814–17.
  39. ^ Ehrenfest, Paul (1909). "Gleichförmige Rotation starrer Körper und Relativitätstheorie" [Uniform Rotation of Rigid Bodies and Theory of Relativity]. Physikalische Zeitschrift (in German). 10 (918): 918. Bibcode:1909PhyZ...10..918E.
  40. ^ Weber, T. A. (1997). "A note on rotating coordinates in relativity". American Journal of Physics. 65 (6): 486–7. Bibcode:1997AmJPh..65..486W. doi:10.1119/1.18575.
  41. ^ Einstein, Albert (1911). "Einfluss der Schwerkraft auf die Ausbreitung des Lichtes" [On the Influence of Gravitation upon the Propagation of Light] (PDF). Annalen der Physik. Series 4 (in German). 35: 898–908. doi:10.1002/andp.19113401005.
  42. ^ Einstein, Albert (1915). "Feldgleichungen der Gravitation" [Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 844–847.
  43. ^ Einstein, Albert (1915). "Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie" [Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 831–839. Bibcode:1915SPAW.......831E.
  44. ^ Einstein, Albert (1916). "Grundlage der allgemeinen Relativitätstheorie" [The Foundation of the General Theory of Relativity] (PDF). Annalen der Physik. 4 (7): 769–822. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702.
  45. ^ Hilbert, David (1915), "Die Grundlagen der Physik" [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (in German), 3: 395–407
  46. ^ Marsden, Jerrold; Tromba, Anthony (2012). "7.7 Applications to Differential Geometry, Physics, and Forms of Life". Vector Calculus (6th ed.). New York: W. H. Freeman Company. p. 422. ISBN 978-1-4292-1508-4.
  47. ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einstein'schen Theorie" [On the Gravitational Field of a Point Mass According to Einstein's Theory]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  48. ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit" [On the Gravitational Field of a Sphere of Incompressible Fluid]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  49. ^ Levy, Adam (January 11, 2021). "How black holes morphed from theory to reality". Knowable Magazine. doi:10.1146/knowable-010921-1. Retrieved 25 March 2022.
  50. ^ Eisenstaedt, "The Early Interpretation of the Schwarzschild Solution," in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
  51. ^ Bartusiak, Marcia (2015). "Chapter 3: One Would Then Find Oneself... in a Geometrical Fairyland". Black Hole: How An Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN 978-0-300-21085-9.
  52. ^ Einstein, Albert (1916). "Näherungsweise Integration der Feldgleichungen der Gravitation" [Approximate Integration of the Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 688–696. Bibcode:1916SPAW.......688E.
  53. ^ de Sitter, W (1916). "On Einstein's Theory of Gravitation and its Astronomical Consequences". Mon. Not. R. Astron. Soc. 77: 155–184. Bibcode:1916MNRAS..77..155D. doi:10.1093/mnras/77.2.155.
  54. ^ Einstein, Albert (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" [Cosmological Considerations in the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German). 1: 142–152.
  55. ^ The Internal Constitution of the Stars A. S. Eddington The Scientific Monthly Vol. 11, No. 4 (Oct., 1920), pp. 297–303 JSTOR 6491
  56. ^ Eddington, A. S. (1916). "On the radiative equilibrium of the stars". Monthly Notices of the Royal Astronomical Society. 77: 16–35. Bibcode:1916MNRAS..77...16E. doi:10.1093/mnras/77.1.16.
  57. ^ Einstein, Albert (1918). "Gravitationswellen" [Gravitational Waves]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 154–167.
  58. ^ Holz, Daniel; Hughes, Scott; Bernard, Schultz (December 2018). "Measuring cosmic distances with standard sirens". Physics Today. 71 (12): 34. Bibcode:2018PhT....71l..34H. doi:10.1063/PT.3.4090. S2CID 125545290.
  59. ^ Thirring, H. (1918). "Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 33. Bibcode:1918PhyZ...19...33T. [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
  60. ^ Thirring, H. (1921). "Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie'". Physikalische Zeitschrift. 22: 29. Bibcode:1921PhyZ...22...29T. [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
  61. ^ Lense, J.; Thirring, H. (1918). "Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 156–163. Bibcode:1918PhyZ...19..156L. [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
  62. ^ Dyson, F.W.; Eddington, A.S.; Davidson, C.R. (1920). "A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Solar eclipse of May 29, 1919". Philosophical Transactions of the Royal Society A. 220 (571–581): 291–333. Bibcode:1920RSPTA.220..291D. doi:10.1098/rsta.1920.0009.
  63. ^ Kennefick, Daniel (1 March 2009). "Testing relativity from the 1919 eclipse – a question of bias". Physics Today. 62 (3): 37–42. Bibcode:2009PhT....62c..37K. doi:10.1063/1.3099578.
  64. ^ David Kaiser, "How Politics Shaped General Relativity", New York Times, November 6, 2015.
  65. ^ Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) (in German): 966–972. Bibcode:1921SPAW.......966K.
  66. ^ Pais, Abraham (2000). "Chapter 7: Oskar Klein". The Genius of Science: A Portrait Gallery of Twentieth-Century Physicists. New York: Oxford University Press. ISBN 0-19-850614-7.
  67. ^ Friedman, Alexander (December 1922). "Über die Krümmung des Raumes". Zeitschrift für Physik (in German). 10 (1): 377–386. Bibcode:1922ZPhy...10..377F. doi:10.1007/BF01332580. S2CID 125190902. Translated in: Friedmann, Alexander (December 1999). "On the Curvature of Space". General Relativity and Gravitation. 31 (12): 1991–2000. Bibcode:1999GReGr..31.1991F. doi:10.1023/A:1026751225741. S2CID 122950995.
  68. ^ Marzlin, Karl-Peter (1994). "The physical meaning of Fermi coordinates". General Relativity and Gravitation. 26 (6): 619–636. arXiv:gr-qc/9402010. Bibcode:1994GReGr..26..619M. doi:10.1007/BF02108003. S2CID 17918026.
  69. ^ Segrè, Gino; Hoerlin, Bettina (2016). "Chapter 4: Student Days". The Pope of Physics. Henry Holt and Co. p. 27. ISBN 978-1-627-79005-5.
  70. ^ Eddington, A. S. (1924). "On the relation between the masses and luminosities of the stars". Monthly Notices of the Royal Astronomical Society. 84 (5): 308–333. Bibcode:1924MNRAS..84..308E. doi:10.1093/mnras/84.5.308.
  71. ^ Adams, W. S. (1925). "The Relativity Displacement of the Spectral Lines in the Companion of Sirius". Proceedings of the National Academy of Sciences. 11 (7): 382–387. Bibcode:1925PNAS...11..382A. doi:10.1073/pnas.11.7.382. PMC 1086032. PMID 16587023.
  72. ^ "Big bang theory is introduced – 1927". A Science Odyssey. WGBH. Retrieved 31 July 2014.
  73. ^ Hubble, Edwin (15 March 1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae". Proceedings of the National Academy of Sciences. 15 (3): 168–173. Bibcode:1929PNAS...15..168H. doi:10.1073/pnas.15.3.168. PMC 522427. PMID 16577160. Archived from the original on 1 October 2006. Retrieved 28 November 2019.
  74. ^ Chandrasekhar, S. (1931). "The Density of White Dwarf Stars". Philosophical Magazine. 11 (70): 592–596. doi:10.1080/14786443109461710. S2CID 119906976.
  75. ^ Chandrasekhar, S. (1931). "The Maximum Mass of Ideal White Dwarfs". Astrophysical Journal. 74: 81–82. Bibcode:1931ApJ....74...81C. doi:10.1086/143324.
  76. ^ "Obituary: Georges Lemaitre". Physics Today. 19 (9): 119–121. September 1966. doi:10.1063/1.3048455.
  77. ^ Lemaître, Georges; Eddington, Stanley (March 1931). "The Expanding Universe". Monthly Notices of the Royal Astronomical Society. 91 (5): 490–501. doi:10.1093/mnras/91.5.490.
  78. ^ Einstein, Albert (1931). "Zum kosmologischen Problem der allgemeinen Relativitätstheorie" [On the Cosmological Problem of the General Theory of Relativity]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German): 235–237.
  79. ^ Einstein; and De Sitter (1932). "On the relation between the expansion and the mean density of the universe". Proceedings of the National Academy of Sciences. 18 (3): 213–214. Bibcode:1932PNAS...18..213E. doi:10.1073/pnas.18.3.213. PMC 1076193. PMID 16587663.
  80. ^ Baade, Walter; Zwicky, Fritz (1934). "Remarks on Super-novae and Cosmic Rays" (PDF). Physical Review. 46 (1): 76–77. Bibcode:1934PhRv...46...76B. doi:10.1103/PHYSREV.46.76.2.
  81. ^ McCormick, Katie (July 18, 2023). "Ultracold Gases Can Probe Neutron Star Guts". Scientific American. Archived from the original on July 31, 2023. Retrieved July 31, 2023.
  82. ^ A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev. 48(73) (1935).
  83. ^ Einstein, Albert (1936). "Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field". Science. 84 (2188): 506–507. Bibcode:1936Sci....84..506E. doi:10.1126/science.84.2188.506. PMID 17769014.
  84. ^ F. Zwicky (1937). "Nebulae as Gravitational lenses" (PDF). Physical Review. 51 (4): 290. Bibcode:1937PhRv...51..290Z. doi:10.1103/PhysRev.51.290. Archived (PDF) from the original on 2013-12-26.
  85. ^ Einstein, Albert & Rosen, Nathan (1937). "On Gravitational waves". Journal of the Franklin Institute. 223: 43–54. Bibcode:1937FrInJ.223...43E. doi:10.1016/S0016-0032(37)90583-0.
  86. ^ Einstein, Albert; Infeld, Leopold; Hoffmann, Banesh (1938). "The Gravitational Equations and the Problem of Motion". Annals of Mathematics. 39 (1): 65–100. doi:10.2307/1968714. JSTOR 1968714.
  87. ^ Lee, S.; Brown, G. E. (2007). "Hans Albrecht Bethe. 2 July 1906 — 6 March 2005: Elected ForMemRS 1957". Biographical Memoirs of Fellows of the Royal Society. 53: 1. doi:10.1098/rsbm.2007.0018.
  88. ^ Tolman, Richard C. (1939). "Static Solutions of Einstein's Field Equations for Spheres of Fluid". Physical Review. 55 (364): 364–373. Bibcode:1939PhRv...55..364T. doi:10.1103/PhysRev.55.364.
  89. ^ a b c d Pais, Abraham; Crease, Robert (2006). J. Robert Oppenheimer: A Life. Oxford University Press. pp. 31–2. ISBN 978-0-195-32712-0.
  90. ^ Oppenheimer, J.R.; Serber, Robert (1938). "On the Stability of Stellar Neutron Cores". Physical Review. 54 (7): 540. Bibcode:1938PhRv...54..540O. doi:10.1103/PhysRev.54.540.
  91. ^ Oppenheimer, J.R.; Volkoff, G.M. (1939). "On Massive Neutron Cores" (PDF). Physical Review. 55 (4): 374–381. Bibcode:1939PhRv...55..374O. doi:10.1103/PhysRev.55.374. Archived (PDF) from the original on January 16, 2014. Retrieved January 15, 2014.
  92. ^ Oppenheimer, J.R.; Snyder, H. (1939). "On Continued Gravitational Contraction". Physical Review. 56 (5): 455–459. Bibcode:1939PhRv...56..455O. doi:10.1103/PhysRev.56.455.
  93. ^ Bartels, Megan (July 21, 2023). "Oppenheimer Almost Discovered Black Holes Before He Became 'Destroyer of Worlds'". Scientific American. Retrieved July 26, 2023.
  94. ^ Alpher, R. A.; Herman, R. C. (1948). "On the Relative Abundance of the Elements". Physical Review. 74 (12): 1737–1742. Bibcode:1948PhRv...74.1737A. doi:10.1103/PhysRev.74.1737.
  95. ^ Alpher, R. A.; Herman, R. C. (1948). "Evolution of the Universe". Nature. 162 (4124): 774–775. Bibcode:1948Natur.162..774A. doi:10.1038/162774b0. S2CID 4113488.
  96. ^ Lanczos, Cornelius (1949-07-01). "Lagrangian Multiplier and Riemannian Spaces". Reviews of Modern Physics. 21 (3). American Physical Society (APS): 497–502. Bibcode:1949RvMP...21..497L. doi:10.1103/revmodphys.21.497. ISSN 0034-6861.
  97. ^ Gödel, K., "An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation", Rev. Mod. Phys. 21, 447, published July 1, 1949.
  98. ^ Gupta, Suraj N. (1952). "Quantization of Einstein's Gravitational Field: General Treatment". Proceedings of the Physical Society. Series A. 65 (8): 608–619. Bibcode:1952PPSA...65..608G. doi:10.1088/0370-1298/65/8/304.
  99. ^ Deser, Stanley (1970). "Self-interaction and gauge invariance". General Relativity and Gravitation. 1 (1): 9–18. arXiv:gr-qc/0411023. Bibcode:1970GReGr...1....9D. doi:10.1007/BF00759198. S2CID 14295121.
  100. ^ a b c d e Preskill, John and Kip S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman et al. (Westview Press; 1st ed. (June 20, 2002). PDF link
  101. ^ Kraichnan (1955). "Special-Relativistic Derivation of Generally Covariant Gravitation Theory". Physical Review. 98 (4): 1118–1122. Bibcode:1955PhRv...98.1118K. doi:10.1103/PhysRev.98.1118.
  102. ^ Kraichnan (1956). "Possibility of unequal gravitational and inertial masses". Physical Review. 101 (1): 482–488. Bibcode:1956PhRv..101..482K. doi:10.1103/PhysRev.101.482.
  103. ^ Bertotti, B. (1956-10-01). "On gravitational motion". Il Nuovo Cimento. 4 (4): 898–906. Bibcode:1956NCim....4..898B. doi:10.1007/BF02746175. ISSN 1827-6121. S2CID 120443098.
  104. ^ Dewitt, Cécile M.; Rickles, Dean (1957). An Expanded Version of the Remarks by R.P. Feynman on the Reality of Gravitational Waves. EOS – Sources. Wright-Patterson Air Force Base. ISBN 9783945561294. Retrieved 27 September 2016.
  105. ^ Finkelstein, David (1958). "Past-Future Asymmetry of the Gravitational Field of a Point Particle". Physical Review. 110 (4): 965–967. Bibcode:1958PhRv..110..965F. doi:10.1103/PhysRev.110.965.
  106. ^ Pound, Robert; Rebka, Glen (1959). "Gravitational Red-Shift in Nuclear Resonance". Physical Review Letters. 3 (439): 439–441. Bibcode:1959PhRvL...3..439P. doi:10.1103/PhysRevLett.3.439.
  107. ^ Kruskal, Martin (1960). "Maximal Extension of Schwarzschild Metric". Physical Review Letters. 119 (1743): 1743–1745. Bibcode:1960PhRv..119.1743K. doi:10.1103/PhysRev.119.1743.
  108. ^ Gibbon, John D.; Cowley, Steven C.; Joshi, Nalini; MacCallum, Malcolm A. H. (2017). "Martin David Kruskal. 28 September 1925 — 26 December 2006". Biographical Memoirs of Fellows of the Royal Society. 64: 261–284. arXiv:1707.00139. doi:10.1098/rsbm.2017.0022. ISSN 0080-4606. S2CID 67365148.
  109. ^ Graves, John C.; Brill, Dieter R. (1960). "Oscillatory Character of Reissner-Nordström Metric for an Ideal Charged Wormhole". Physical Review Letters. 120 (4): 1507–1513. Bibcode:1960PhRv..120.1507G. doi:10.1103/PhysRev.120.1507.
  110. ^ Robinson, Ivor; Trautman, A. (1960). "Spherical Gravitational Waves". Physical Review Letters. 4 (8). Cdsads.u-strasbg.fr: 431. Bibcode:1960PhRvL...4..431R. doi:10.1103/PhysRevLett.4.431. Retrieved 2012-07-20.
  111. ^ Pound, Robert; Rebka, Glen (1960). "Apparent Weight of Photons". Physical Review Letters. 4 (337): 337–341. Bibcode:1960PhRvL...4..337P. doi:10.1103/PhysRevLett.4.337.
  112. ^ Tullio E. Regge (1961). "General relativity without coordinates". Nuovo Cimento. 19 (3): 558–571. Bibcode:1961NCim...19..558R. doi:10.1007/BF02733251. S2CID 120696638. Available (subscribers only) at Il Nuovo Cimento
  113. ^ Bran, Carl; Dicke, Robert (1961). "Mach's Principle and a Relativistic Theory of Gravitation". Physical Review Letters. 124 (925): 925–935. Bibcode:1961PhRv..124..925B. doi:10.1103/PhysRev.124.925.
  114. ^ Roll, P.G; Krotkov, R; Dicke, R.H (1964). "The equivalence of inertial and passive gravitational mass". Annals of Physics. 26 (3). Elsevier BV: 442–517. Bibcode:1964AnPhy..26..442R. doi:10.1016/0003-4916(64)90259-3. ISSN 0003-4916.
  115. ^ Dicke, Robert H. (December 1961). "The Eötvös Experiment". Scientific American. 205 (6): 84–95. Bibcode:1961SciAm.205f..84D. doi:10.1038/scientificamerican1261-84.
  116. ^ Wheeler, John; Fuller, Robert (1962). "Causality and Multiply Connected Space-Time". Physical Review Letters. 128 (919): 919–929. Bibcode:1962PhRv..128..919F. doi:10.1103/PhysRev.128.919.
  117. ^ Goldberg, J. N.; Sachs, R. K. (1962). "A theorem on Petrov types (republished January 2009)". General Relativity and Gravitation. 41 (2): 433–444. doi:10.1007/s10714-008-0722-5. S2CID 122155922.; originally published in Acta Phys. Pol. 22, 13–23 (1962).
  118. ^ Kerr, Roy P. (1963). "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics". Physical Review Letters. 11 (5): 237–238. Bibcode:1963PhRvL..11..237K. doi:10.1103/PhysRevLett.11.237.
  119. ^ Penrose, Roger (1963). "Asymptotic Properties of Fields and Space-Times". Physical Review Letters. 10 (66): 66–68. Bibcode:1963PhRvL..10...66P. doi:10.1103/PhysRevLett.10.66.
  120. ^ Weinberg, Steven (1964). "Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix". Physics Letters. 9 (4): 357–359. Bibcode:1964PhL.....9..357W. doi:10.1016/0031-9163(64)90396-8.
  121. ^ Weinberg, Steven (1964). "Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass". Physical Review. 135 (4B): B1049–B1056. Bibcode:1964PhRv..135.1049W. doi:10.1103/PhysRev.135.B1049.
  122. ^ Chandrasekhar, Subrahmanyan (1964). "Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity". Physical Review Letters. 12 (4): 114–116. Bibcode:1964PhRvL..12..114C. doi:10.1103/PhysRevLett.12.114.
  123. ^ Chiu, Hong-Yee (May 1964). "Gravitational collapse". Physics Today. 17 (5): 21–34. Bibcode:1964PhT....17e..21C. doi:10.1063/1.3051610. So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.
  124. ^ Refsdal, Sjur (1964). "On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect". Monthly Notices of the Royal Astronomical Society. 128 (4): 307–310. doi:10.1093/mnras/128.4.307.
  125. ^ Irwin I. Shapiro (1964). "Fourth Test of General Relativity". Physical Review Letters. 13 (26): 789–791. Bibcode:1964PhRvL..13..789S. doi:10.1103/PhysRevLett.13.789.
  126. ^ "Haystack marks physics milestone". MIT News. July 14, 2005. Retrieved May 2, 2023.
  127. ^ Penrose, Roger (1965). "Gravitational Collapse and Space-Time Singularities". Physical Review Letters. 14 (57): 57–59. Bibcode:1965PhRvL..14...57P. doi:10.1103/PhysRevLett.14.57.
  128. ^ Newman, Ezra; Janis, Allen (1965). "Note on the Kerr Spinning-Particle Metric". Journal of Mathematical Physics. 6 (6): 915–917. Bibcode:1965JMP.....6..915N. doi:10.1063/1.1704350.
  129. ^ Newman, Ezra; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. (1965). "Metric of a Rotating, Charged Mass". Journal of Mathematical Physics. 6 (6): 918–919. Bibcode:1965JMP.....6..918N. doi:10.1063/1.1704351.
  130. ^ Penzias, A.A.; Wilson, R.W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal. 142: 419–421. Bibcode:1965ApJ...142..419P. doi:10.1086/148307.
  131. ^ Bartusiak, Marcia (2015). "Chapter 9: Why Don't You Call It A Black Hole?". Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN 978-0-300-21085-9.
  132. ^ a b Moskowitz, Clara (March 1, 2019). "Neutron Stars: Nature's Weirdest Form of Matter". Scientific American.
  133. ^ Deutsch, David; Isham, Christopher; Vilkovisky, Gregory (2005). "Bryce Seligman DeWitt". Physics Today. 58 (3): 84. Bibcode:2005PhT....58c..84D. doi:10.1063/1.1897570.
  134. ^ Israel, Werner (1967). "Event Horizons in Static Vacuum Space-Times". Phys. Rev. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776.
  135. ^ Israel, Werner (25 December 1967). "Event Horizons in Static Vacuum Space-Times". Physical Review. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776 – via American Physical Society.
  136. ^ Carter, Brandon (1968). "Global structure of the Kerr family of gravitational fields". Physical Review. 174 (5): 1559–1571. Bibcode:1968PhRv..174.1559C. doi:10.1103/PhysRev.174.1559.
  137. ^ Irwin I. Shapiro; Gordon H. Pettengill; Michael E. Ash; Melvin L. Stone; et al. (1968). "Fourth Test of General Relativity: Preliminary Results". Physical Review Letters. 20 (22): 1265–1269. Bibcode:1968PhRvL..20.1265S. doi:10.1103/PhysRevLett.20.1265.
  138. ^ Nordvedt, Kennet (1968). "Equivalence Principle for Massive Bodies. II. Theory". Physical Review Letters. 169 (1017): 1017–1025. Bibcode:1968PhRv..169.1017N. doi:10.1103/PhysRev.169.1017.
  139. ^ Bonnor, William B. (1969). "The Gravitational Field of Light" (PDF). Communications in Mathematical Physics. 13 (3): 163–174. Bibcode:1969CMaPh..13..163B. doi:10.1007/BF01645484. S2CID 123398946.
  140. ^ "Making Waves". TERP. 2016-08-18. Retrieved 2016-11-07.
  141. ^ Cho, Adrian (February 15, 2016). "Remembering Joseph Weber, the controversial pioneer of gravitational waves". Science.
  142. ^ David Kaiser, "Learning from Gravitational Waves", New York Times, October 3, 2017.
  143. ^ Penrose, Roger (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento. Rivista Serie. 1: 252–276. Bibcode:1969NCimR...1..252P.
  144. ^ Choquet-Bruhat, Yvonne; Geroch, Robert (1969). "Global aspects of the Cauchy problem in general relativity". Communications in Mathematical Physics. 14 (4): 329–335. Bibcode:1969CMaPh..14..329C. doi:10.1007/BF01645389. S2CID 121522405.
  145. ^ Chandrasekhar, S. (1965). "The post-Newtonian equations of hydrodynamics in General Relativity". The Astrophysical Journal. 142: 1488. Bibcode:1965ApJ...142.1488C. doi:10.1086/148432.
  146. ^ Chandrasekhar, S. (1967). "The post-Newtonian effects of General Relativity on the equilibrium of uniformly rotating bodies. II. The deformed figures of the MacLaurin spheroids". The Astrophysical Journal. 147: 334. Bibcode:1967ApJ...147..334C. doi:10.1086/149003.
  147. ^ Chandrasekhar, S. (1969). "Conservation laws in general relativity and in the post-Newtonian approximations". The Astrophysical Journal. 158: 45. Bibcode:1969ApJ...158...45C. doi:10.1086/150170.
  148. ^ Chandrasekhar, S.; Nutku, Y. (1969). "The second post-Newtonian equations of hydrodynamics in General Relativity". Relativistic Astrophysics. 86: 55. Bibcode:1969ApJ...158...55C. doi:10.1086/150171.
  149. ^ Chandrasekhar, S.; Esposito, F.P. (1970). "The 2½-post-Newtonian equations of hydrodynamics and radiation reaction in General Relativity". The Astrophysical Journal. 160: 153. Bibcode:1970ApJ...160..153C. doi:10.1086/150414.
  150. ^ Hawking, Stephen W.; Ellis, George F. R. (April 1968). "The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe". The Astrophysical Journal. 152: 25. Bibcode:1968ApJ...152...25H. doi:10.1086/149520.
  151. ^ Hawking, Stephen W.; Penrose, Roger (27 January 1970). "The Singularities of Gravitational Collapse and Cosmology". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 314 (1519): 529–548. Bibcode:1970RSPSA.314..529H. doi:10.1098/rspa.1970.0021.
  152. ^ Goldhaber, Alfred; Nieto, Michael (1971). "Terrestrial and Extraterrestrial Limits on The Photon Mass". Reviews of Modern Physics. 43 (3). American Physical Society: 277–296. Bibcode:1971RvMP...43..277G. doi:10.1103/RevModPhys.43.277.
  153. ^ Jackson, John David (1999). "Section I.2: Inverse Square Law or Mass of the Photon". Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. pp. 5–9. ISBN 0-471-30932-X.
  154. ^ Hawking, Stephen (October 1971). "Black Holes in General Relativity". Communications in Mathematical Physics. 25 (2): 152–166. doi:10.1007/BF01877517. S2CID 121527613.
  155. ^ Bekenstein, A. (1972). "Black holes and the second law". Lettere al Nuovo Cimento. 4 (15): 99–104. doi:10.1007/BF02757029. S2CID 120254309.
  156. ^ Cho, Adrian (October 3, 2017). "Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves," Science. Retrieved May 20, 2019.
  157. ^ Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Predicted Relativistic Time Gains" (PDF). Science. 177 (4044): 166–168. Bibcode:1972Sci...177..166H. doi:10.1126/science.177.4044.166. PMID 17779917. S2CID 10067969.
  158. ^ Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Observed Relativistic Time Gains" (PDF). Science. 177 (4044): 168–170. Bibcode:1972Sci...177..168H. doi:10.1126/science.177.4044.168. PMID 17779918. S2CID 37376002.
  159. ^ Wick, Gerald (February 3, 1972). "The clock paradox resolved". New Scientist: 261–263.
  160. ^ Teukolsky, Saul (1972). "Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations" (PDF). Physical Review Letters. 29 (16): 1114–1118. Bibcode:1972PhRvL..29.1114T. doi:10.1103/PhysRevLett.29.1114. S2CID 122083437.
  161. ^ Bardeen, John M.; Carter, Brandon; Hawking, Stephen (June 1973). "The four laws of black hole mechanics" (PDF). Communications in Mathematical Physics. 31 (2): 161–170. Bibcode:1973CMaPh..31..161B. doi:10.1007/BF01645742. S2CID 54690354.
  162. ^ Bardeen, James M. (1973). "Timelike and null geodesics in the Kerr metric". Proceedings, École d'Été de Physique Théorique: Les Astres Occlus: Les Houches, France, August, 1972: 215–240. Bibcode:1973blho.conf..215B. ISBN 9780677156101.
  163. ^ Overbye, Dennis (July 3, 2022). "James Bardeen, an Expert on Unraveling Einstein's Equations, Dies at 83". The New York Times. Archived from the original on July 3, 2022. Retrieved May 8, 2023.
  164. ^ Kaiser, David (2012). "A Tale of Two Textooks". Isis. 103 (1). University of Chicago Press: 126–138. doi:10.1086/664983. hdl:1721.1/82907. PMID 22655343.
  165. ^ Dahn, Ryan (March 10, 2023). "Gravitation's attraction, 50 years later". Physics Today. Retrieved July 31, 2023.
  166. ^ H. G. Ellis (1973). "Ether flow through a drainhole: A particle model in general relativity". Journal of Mathematical Physics. 14 (1): 104–118. Bibcode:1973JMP....14..104E. doi:10.1063/1.1666161.
  167. ^ Matson, John (Oct 1, 2010). "Artificial event horizon emits laboratory analogue to theoretical black hole radiation". Sci. Am.
  168. ^ Hawking, Stephen (March 1, 1974). "Black Hole Explosions?". Nature. 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0. S2CID 4290107.
  169. ^ Hawking, Stephen (1975). "Particle Creation by Black Holes". Communications in Mathematical Physics. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020. S2CID 55539246.
  170. ^ Collela, Roberto; Overhauser, Albert; Werner, Samuel (1975). "Observation of Gravitationally Induced Quantum Interference". Physical Review Letters. 34 (1472): 1472–1474. Bibcode:1975PhRvL..34.1472C. doi:10.1103/PhysRevLett.34.1472.
  171. ^ Staudenmann, J. -L.; Collela, Roberto; Werner, Samuel; Overhauser, Albert (1980). "Gravity and Inertia in Quantum Mechanics". Physical Review A. 21 (1419): 1419–1438. Bibcode:1980PhRvA..21.1419S. doi:10.1103/PhysRevA.21.1419.
  172. ^ Abele, Hartmut; Leeb, Helmut (2012). "Gravitation and quantum interference experiments with neutrons". New Journal of Physics. 14 (5): 055010. arXiv:1207.2953. Bibcode:2012NJPh...14e5010A. doi:10.1088/1367-2630/14/5/055010. ISSN 1367-2630. S2CID 53653704.
  173. ^ Townsend, John S. (2012). "Section 8.7: Quantum Interference due to Gravity". A Modern Approach to Quantum Mechanics (2nd ed.). University Science Books. pp. 297–99. ISBN 978-1-891389-78-8.
  174. ^ D.Walsh; R.F.Carswell; R.J.Weymann (31 May 1979). "0957 + 561 A, B: twin quasistellar objects or gravitational lens?" (PDF). Nature. 279 (5712): 381–384. doi:10.1038/279381a0. PMID 16068158. S2CID 2142707.
  175. ^ Luminet, Jean-Pierre (1979). "Image of a spherical black hole with thin accretion disk". Astronomy and Astrophysics. 75 (1–2): 228–235. Bibcode:1979A&A....75..228L.
  176. ^ "First ever image of a black hole: a CNRS researcher had simulated it as early as 1979". Espace presse. CNRS. April 10, 2019. Retrieved May 24, 2023.
  177. ^ Schoen, Robert; Yau, Shing-Tung (1979). "On the proof of the positive mass conjecture in general relativity". Communications in Mathematical Physics. 65 (1): 45. Bibcode:1979CMaPh..65...45S. doi:10.1007/BF01940959. S2CID 54217085.
  178. ^ Schoen, Robert; Yau, Shing-Tung (1981). "Proof of the positive mass theorem. II". Communications in Mathematical Physics. 79 (2): 231. Bibcode:1981CMaPh..79..231S. doi:10.1007/BF01942062. S2CID 59473203.
  179. ^ Witten, Edward (1981). "A new proof of the positive energy theorem". Communications in Mathematical Physics. 80 (3): 381–402. Bibcode:1981CMaPh..80..381W. doi:10.1007/BF01208277. S2CID 1035111.
  180. ^ Rubin, Vera; et al. (June 1980). "Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)". Astrophysical Journal. 238: 471–487. Bibcode:1980ApJ...238..471R. doi:10.1086/158003.
  181. ^ Nemiroff, Robert; Bonnell, Jerry (April 5, 2023). "Rubin's Galaxy". Astronomy Picture of the Day. NASA. Retrieved April 18, 2023.
  182. ^ Vessot, R. F. C.; et al. (1980). "Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser" (PDF). Physical Review Letters. 45 (26): 2081–2084. Bibcode:1980PhRvL..45.2081V. doi:10.1103/PhysRevLett.45.2081.
  183. ^ Bardeen, James M. (1980). "Gauge-invariant cosmological perturbations" (PDF). Physical Review D. 22 (8): 1882–1905. Bibcode:1980PhRvD..22.1882B. doi:10.1103/PhysRevD.22.1882.
  184. ^ Guth, Alan (15 January 1981). "Inflationary universe: A possible solution to the horizon and flatness problems". Physical Review D. 23 (2): 347–356. Bibcode:1981PhRvD..23..347G. doi:10.1103/PhysRevD.23.347.
  185. ^ Friedrich, Helmut (1986). "On the existence of -geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure". Communications in Mathematical Physics. 107 (4): 587–609. Bibcode:1986CMaPh.107..587F. doi:10.1007/BF01205488. S2CID 121761845.
  186. ^ a b c Nadis, Steve (May 11, 2020). "New Math Proves That a Special Kind of Space-Time Is Unstable". Quanta Magazine. Retrieved January 6, 2023.
  187. ^ Schultz, Bernard (1986). "Determining the Hubble constant from gravitational wave observations". Nature. 323 (6086): 310–311. Bibcode:1986Natur.323..310S. doi:10.1038/323310a0. hdl:11858/00-001M-0000-0013-73C1-2. S2CID 4327285.
  188. ^ Morris, Mike; Thorne, Kip; Yurtsever, Ulvi (1986). "Wormholes, Time Machines, and the Weak Energy Condition". Physical Review Letters. 61 (1446): 1446–1449. doi:10.1103/PhysRevLett.61.1446. PMID 10038800.
  189. ^ Morris, Michael S. & Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics. 56 (5): 395–412. Bibcode:1988AmJPh..56..395M. doi:10.1119/1.15620.
  190. ^ Weinberg, Steven (1989). "The Cosmological Constant Problem". Physical Review Letters. 61 (1): 1–23. Bibcode:1989RvMP...61....1W. doi:10.1103/RevModPhys.61.1. hdl:2152/61094. S2CID 122259372.
  191. ^ Hawking, Stephen (1992). "Chronology Protection Conjecture". Physical Review D. 46 (603): 603–611. Bibcode:1992PhRvD..46..603H. doi:10.1103/PhysRevD.46.603. PMID 10014972.
  192. ^ Christodoulou, Demetrios; Klainerman, Sergiu (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press. ISBN 0-691-08777-6.
  193. ^ Donoghue, John F. (1994). "General relativity as an effective field theory: The leading quantum corrections". Physical Review D. 50 (3874): 3874–3888. arXiv:gr-qc/9405057. Bibcode:1994PhRvD..50.3874D. doi:10.1103/PhysRevD.50.3874. PMID 10018030. S2CID 14352660.
  194. ^ Goldberger, Walter; Rothstein, Ira (2004). "An Effective Field Theory of Gravity for Extended Objects". Physical Review D. 73 (10): 104029. arXiv:hep-th/0409156. doi:10.1103/PhysRevD.73.104029. S2CID 54188791.
  195. ^ "Hubble's Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years". NASA. 1995. Retrieved January 12, 2009.
  196. ^ "A Bull's Eye for MERLIN and the Hubble". University of Manchester. 27 March 1998.
  197. ^ Browne, Malcolm W. (1998-03-31). "'Einstein Ring' Caused by Space Warping Is Found". The New York Times. Retrieved 2010-05-01.
  198. ^ Smoot, G. F.; et al. (1992). "Structure in the COBE differential microwave radiometer first-year maps". Astrophysical Journal Letters. 396 (1): L1–L5. Bibcode:1992ApJ...396L...1S. doi:10.1086/186504. S2CID 120701913.
  199. ^ Bennett, C.L.; et al. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results". Astrophysical Journal Letters. 464: L1–L4. arXiv:astro-ph/9601067. Bibcode:1996ApJ...464L...1B. doi:10.1086/310075. S2CID 18144842.
  200. ^ Reiss, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Gilliland, Ron L.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Leibundgut, B.; Phillips, M. M.; Reiss, David; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Spyromilio, J.; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John (1998). "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant". The Astronomical Journal. 116 (3): 1009–1038. arXiv:astro-ph/9805201. Bibcode:1998AJ....116.1009R. doi:10.1086/300499. S2CID 15640044.
  201. ^ Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.M.; Couch, W.J. (1999). "Measurements of Omega and Lambda from 42 High-Redshift Supernovae". The Astrophysical Journal. 517 (2): 565–586. arXiv:astro-ph/9812133. Bibcode:1999ApJ...517..565P. doi:10.1086/307221. S2CID 118910636.
  202. ^ Buonanno, A.; Damour, T. (1999-03-08). "Effective one-body approach to general relativistic two-body dynamics". Physical Review D. 59 (8). American Physical Society (APS): 084006. arXiv:gr-qc/9811091. Bibcode:1999PhRvD..59h4006B. doi:10.1103/physrevd.59.084006. ISSN 0556-2821. S2CID 14951569.
  203. ^ Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016-06-07). "GW150914: First results from the search for binary black hole coalescence with Advanced LIGO". Physical Review D. 93 (12): 122003. arXiv:1602.03839. Bibcode:2016PhRvD..93l2003A. doi:10.1103/physrevd.93.122003. ISSN 2470-0010. PMC 7430253. PMID 32818163. S2CID 217628912.
  204. ^ Borde, Arvind; Guth, Alan H.; Vilenkin, Alexander (15 April 2003). "Inflationary space-times are incomplete in past directions". Physical Review Letters. 90 (15): 151301. arXiv:gr-qc/0110012. Bibcode:2003PhRvL..90o1301B. doi:10.1103/PhysRevLett.90.151301. PMID 12732026. S2CID 46902994.
  205. ^ Perlov, Delia; Vilenkin, Alexander (7 August 2017). Cosmology for the Curious. Cham, Switzerland: Springer. pp. 330–31. ISBN 978-3319570402.
  206. ^ Williams, James G.; Turyshev, Slava G.; Boggs, Dale H. (2004). "Progress in Lunar Laser Ranging Tests of Relativistic Gravity". Physical Review Letters. 93 (261101): 261101. arXiv:gr-qc/0411113. Bibcode:2004PhRvL..93z1101W. doi:10.1103/PhysRevLett.93.261101. PMID 15697965. S2CID 33664768.
  207. ^ Holz, Daniel; Hughes, Scott (2005). "Using Gravitational-Wave Standard Sirens". Astrophysical Journal. 629 (1): 15–22. arXiv:astro-ph/0504616. Bibcode:2005ApJ...629...15H. doi:10.1086/431341. hdl:1721.1/101190. S2CID 12017349.
  208. ^ Everitt, C.W.F.; Parkinson, B.W. (2009). "Gravity Probe B Science Results—NASA Final Report" (PDF). Retrieved 2 May 2009.
  209. ^ Everitt; et al. (2011). "Gravity Probe B: Final Results of a Space Experiment to Test General Relativity". Physical Review Letters. 106 (22): 221101. arXiv:1105.3456. Bibcode:2011PhRvL.106v1101E. doi:10.1103/PhysRevLett.106.221101. PMID 21702590. S2CID 11878715.
  210. ^ Bennett, C. L.; et al. (2011). "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?". Astrophysical Journal Supplement Series. 192 (2): 17. arXiv:1001.4758. Bibcode:2011ApJS..192...17B. doi:10.1088/0067-0049/192/2/17. S2CID 53521938.
  211. ^ "Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe". NASA. September 25, 2012. Retrieved September 26, 2012.
  212. ^ "NASA's NuSTAR Helps Solve Riddle of Black Hole Spin". NASA. 27 February 2013. Retrieved 3 March 2013. Public Domain This article incorporates text from this source, which is in the public domain.
  213. ^ LIGO-VIRGO Collaboration (2016). "Tests of general relativity with GW150914". Physical Review Letters. 116 (22): 22110. arXiv:1602.03841. Bibcode:2016PhRvL.116v1101A. doi:10.1103/PhysRevLett.116.221101. PMID 27314708. S2CID 217275338.
  214. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (15 June 2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters. 116 (24): 241103. arXiv:1606.04855. Bibcode:2016PhRvL.116x1103A. doi:10.1103/PhysRevLett.116.241103. PMID 27367379. S2CID 118651851.
  215. ^ Naeye, Robert (11 February 2016). "Gravitational Wave Detection Heralds New Era of Science". Sky and Telescope. Retrieved 11 February 2016.
  216. ^ Pretorius, Frans (May 31, 2016). "Relativity Gets Thorough Vetting from LIGO". Physics. Vol. 9, no. 52. American Physical Society. Retrieved May 12, 2023.
  217. ^ Chu, Jennifer (June 15, 2016). "For second time, LIGO detects gravitational waves". MIT News. Retrieved June 16, 2016.
  218. ^ a b Abbott, B. P.; et al. (October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225. S2CID 217163611.
  219. ^ a b Goldstein, A.; et al. (October 2017). "An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A". Astrophysical Review Letters. 848 (2): L14. arXiv:1710.05446. Bibcode:2017ApJ...848L..14G. doi:10.3847/2041-8213/aa8f41. S2CID 89613132.
  220. ^ Savchenko, V.; et al. (October 2017). "INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817". Astrophysical Review Letters. 848 (2): L15. arXiv:1710.05449. Bibcode:2017ApJ...848L..15S. doi:10.3847/2041-8213/aa8f94. S2CID 54078722.
  221. ^ Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (2017). "Gravitational waves and gamma-rays from a binary neutron star merger: GW 170817 and GRB 170817A". The Astrophysical Journal Letters. 848 (2): L13. arXiv:1710.05834. Bibcode:2017ApJ...848L..13A. doi:10.3847/2041-8213/aa920c.
  222. ^ Abbott, B. P.; et al. (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger". The Astrophysical Journal Letters. 848 (2). L12. arXiv:1710.05833. Bibcode:2017ApJ...848L..12A. doi:10.3847/2041-8213/aa91c9. S2CID 217162243.
  223. ^ McLaughlin, Maura (October 16, 2017). "Neutron Star Merger Seen and Heard". Physics. Vol. 10, no. 114. American Physical Society. Retrieved May 12, 2023.
  224. ^ Cho A (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. doi:10.1126/science.aar2149.
  225. ^ Landau E, Chou F, Washington D, Porter M (16 October 2017). "NASA missions catch first light from a gravitational-wave event". NASA. Retrieved 16 October 2017.
  226. ^ Johnson, Jennifer (2019). "Populating the periodic table: Nucleosynthesis of the elements". Science. 363 (6426): 474–478. Bibcode:2019Sci...363..474J. doi:10.1126/science.aau9540. PMID 30705182. S2CID 59565697.
  227. ^ Chen, Hsin-Yu; Vitale, Salvatore; Foucart, Francois (October 25, 2021). "The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers". Astrophysical Review Letters. 920 (1): L3. arXiv:2107.02714. Bibcode:2021ApJ...920L...3C. doi:10.3847/2041-8213/ac26c6. S2CID 238198587.
  228. ^ Watson, Darach; et al. (2019). "Identification of strontium in the merger of two neutron stars". Nature. 574 (7779): 497–500. arXiv:1910.10510. Bibcode:2019Natur.574..497W. doi:10.1038/s41586-019-1676-3. PMID 31645733. S2CID 204837882.
  229. ^ Curtis, Sanjana (January 2023). "How Star Collisions Forge the Universe's Heaviest Elements". Scientific American: 30–7.
  230. ^ Touboul, Pierre; et al. (8 December 2017). "MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle". Physical Review Letters. 119 (23). 231101. arXiv:1712.01176. Bibcode:2017PhRvL.119w1101T. doi:10.1103/PhysRevLett.119.231101. PMID 29286705. S2CID 6211162.
  231. ^ MICROSCOPE Collaboration (2022). "MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle". Physical Review Letters. 129 (12): 121102. arXiv:2209.15487. Bibcode:2022PhRvL.129l1102T. doi:10.1103/PhysRevLett.129.121102. PMID 36179190. S2CID 252468544.
  232. ^ Brax, Philippe (September 14, 2022). "Satellite Confirms the Principle of Falling". Physics. 15 (94). American Physical Society (APS): 94. Bibcode:2022PhyOJ..15...94B. doi:10.1103/Physics.15.94. S2CID 252801272.
  233. ^ Tino, G. M.; et al. (2017). "Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states". Nature Communications. 8 (15529): 15529. arXiv:1704.02296. Bibcode:2017NatCo...815529R. doi:10.1038/ncomms15529. PMC 5461482. PMID 28569742.
  234. ^ LIGO-VIRGO Collaboration; 1M2H Collaboration; et al. (2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv:1710.05835. Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID 29094696. S2CID 205261622.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  235. ^ Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (November 2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv:1710.05835. Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID 29094696. S2CID 205261622.
  236. ^ Chen HY, Fishbach M, Holz DE (October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature. 562 (7728): 545–547. arXiv:1712.06531. Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID 30333628. S2CID 52987203.
  237. ^ Akrami, Y.; et al. (Planck Collaboration) (2020). "Planck 2018 results. I. Overview, and the comological legacy of Planck". Astronomy & Astrophysics. 641: A1. arXiv:1807.06205. Bibcode:2020A&A...641A...1P. doi:10.1051/0004-6361/201833880. S2CID 119185252.
  238. ^ Hartnett, Kevin (17 May 2018). "Mathematicians Disprove Conjecture Made to Save Black Holes". Quanta Magazine. Retrieved 29 March 2020.
  239. ^ Advanced LIGO-VIRGO Collaboration (2018). "GW170817: Measurements of Neutron Star Radii and Equation of State". Physical Review Letters. 121 (161101): 161101. arXiv:1805.11581. Bibcode:2018PhRvL.121p1101A. doi:10.1103/PhysRevLett.121.161101. PMID 30387654. S2CID 53235598.
  240. ^ Sokol, Joshua (June 5, 2018). "Gravitational Waves Reveal the Hearts of Neutron Stars". Scientific American.
  241. ^ Rezzolla, L.; Most, E. R.; Weih, L. R. (2018). "Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars". Astrophysical Journal. 852 (2): L25. arXiv:1711.00314. Bibcode:2018ApJ...852L..25R. doi:10.3847/2041-8213/aaa401. S2CID 119359694.
  242. ^ Pardo, Kris; Fishbach, Maya; Holz, Daniel E.; Spergel, David N. (2018). "Limits on the number of spacetime dimensions from GW170817". Journal of Cosmology and Astroparticle Physics. 2018 (7): 048. arXiv:1801.08160. Bibcode:2018JCAP...07..048P. doi:10.1088/1475-7516/2018/07/048. S2CID 119197181.
  243. ^ Lerner, Louise (September 13, 2018). "Gravitational waves provide dose of reality about extra dimensions". UChicago News. Retrieved January 3, 2023.
  244. ^ Lombriser L, Lima N (2017). "Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure". Phys. Lett. B. 765: 382–385. arXiv:1602.07670. Bibcode:2017PhLB..765..382L. doi:10.1016/j.physletb.2016.12.048. S2CID 118486016.
  245. ^ Bettoni D, Ezquiaga JM, Hinterbichler K, Zumalacárregui M (14 April 2017). "Speed of gravitational waves and the fate of Scalar-Tensor Gravity". Physical Review D. 95 (8): 084029. arXiv:1608.01982. Bibcode:2017PhRvD..95h4029B. doi:10.1103/PhysRevD.95.084029. ISSN 2470-0010. S2CID 119186001.
  246. ^ Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (December 2017). "Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A". Physical Review Letters. 119 (25): 251301. arXiv:1710.06394. Bibcode:2017PhRvL.119y1301B. doi:10.1103/PhysRevLett.119.251301. PMID 29303333. S2CID 36160359.
  247. ^ LIGO-VIRGO Collaboration (2018). "Tests of General Relativity with GW170817". Physical Review Letters. 123 (1): 011102. arXiv:1811.00364. doi:10.1103/PhysRevLett.123.011102. PMID 31386391. S2CID 119214541.
  248. ^ Creminelli P, Vernizzi F (December 2017). "Dark Energy after GW170817 and GRB170817A". Physical Review Letters. 119 (25): 251302. arXiv:1710.05877. Bibcode:2017PhRvL.119y1302C. doi:10.1103/PhysRevLett.119.251302. PMID 29303308. S2CID 206304918.
  249. ^ Boran S, Desai S, Kahya E, Woodard R (2018). "GW 170817 falsifies dark matter emulators". Phys. Rev. D. 97 (4): 041501. arXiv:1710.06168. Bibcode:2018PhRvD..97d1501B. doi:10.1103/PhysRevD.97.041501. S2CID 119468128.
  250. ^ Ezquiaga JM, Zumalacárregui M (December 2017). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters. 119 (25): 251304. arXiv:1710.05901. Bibcode:2017PhRvL.119y1304E. doi:10.1103/PhysRevLett.119.251304. PMID 29303304. S2CID 38618360.
  251. ^ Sakstein J, Jain B (December 2017). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters. 119 (25): 251303. arXiv:1710.05893. Bibcode:2017PhRvL.119y1303S. doi:10.1103/PhysRevLett.119.251303. PMID 29303345. S2CID 39068360.
  252. ^ Kitching, Thomas (December 12, 2017). "How crashing neutron stars killed off some of our best ideas about what 'dark energy' is". The Conversation. Retrieved January 5, 2023.
  253. ^ Li, Qing; et al. (2018). "Measurements of the gravitational constant using two independent methods". Nature. 560 (7720): 582–588. Bibcode:2018Natur.560..582L. doi:10.1038/s41586-018-0431-5. PMID 30158607. S2CID 256770086.
  254. ^ Schlamminger, Stephan (August 29, 2018). "Gravity measured with record precision". Nature. 560 (7720): 562–563. Bibcode:2018Natur.560..562S. doi:10.1038/d41586-018-06028-6. PMID 30158612.
  255. ^ Temming, Maria (August 29, 2018). "The strength of gravity has been measured to new precision". Science News. Retrieved August 3, 2023.
  256. ^ Event Horizon Telescope Collaboration (April 10, 2019). "First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole". Astrophysical Review Letters. 875 (1): L6. arXiv:1906.11243. Bibcode:2019ApJ...875L...6E. doi:10.3847/2041-8213/ab1141. S2CID 145969867.
  257. ^ Landau, Elizabeth (April 10, 2019). "Black Hole Image Makes History". Jet Propulsion Laboratory, California Institute of Technology. Retrieved May 17, 2023.
  258. ^ Event Horizon Telescope Collaboration (January 2024). "The persistent shadow of the supermassive black hole of M*87". Astronomy & Astrophysics. 681 (A79). doi:10.1051/0004-6361/202347932.
  259. ^ Staff (2020). "GW190814 Factsheet: Lowest mass ratio to date: Strongest evidence of higher order modes" (PDF). LIGO. Retrieved 26 June 2020.
  260. ^ Abbott, R.; et al. (23 June 2020). "GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object". The Astrophysical Journal Letters. 896 (2): L44. arXiv:2006.12611. Bibcode:2020ApJ...896L..44A. doi:10.3847/2041-8213/ab960f.
  261. ^ Asenbaum, Peter; Overstreet, Chris; Kim, Minjeong; Curti, Joseph; Kasevich, Mark A. (2020). "Atom-Interferometric Test of the Equivalence Principle at the 10−12 Level". Physical Review Letters. 125 (19): 191101. arXiv:2005.11624. Bibcode:2020PhRvL.125s1101A. doi:10.1103/PhysRevLett.125.191101. PMID 33216577. S2CID 218869931.
  262. ^ Conover, Emily (October 28, 2020). "Galileo's famous gravity experiment holds up, even with individual atoms". Science News. Retrieved August 6, 2023.
  263. ^ Bothwell, Tobias; Kennedy, Colin J.; Aeppli, Alexander; Kedar, Dhruv; Robinson, John M.; Oelker, Eric; Staron, Alexander; Ye, Jun (2022). "Resolving the gravitational redshift across a millimetre-scale atomic sample" (PDF). Nature. 602 (7897): 420–424. arXiv:2109.12238. Bibcode:2022Natur.602..420B. doi:10.1038/s41586-021-04349-7. PMID 35173346. S2CID 237940816.
  264. ^ McCormick, Katie (2021-10-25). "An Ultra-Precise Clock Shows How to Link the Quantum World With Gravity". Quanta Magazine. Retrieved 2021-10-29.
  265. ^ Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VII. Polarization of the Ring". Astrophysical Journal Letters. 910 (1): L12. arXiv:2105.01169. Bibcode:2021ApJ...910L..12E. doi:10.3847/2041-8213/abe71d. S2CID 233715159.
  266. ^ Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon". Astrophysical Journal Letters. 910 (1): L13. arXiv:2105.01173. Bibcode:2021ApJ...910L..13E. doi:10.3847/2041-8213/abe4de. S2CID 233659565.
  267. ^ Bower, Geoffrey C. (May 2022). "Focus on First Sgr A* Results from the Event Horizon Telescope". The Astrophysical Journal. Retrieved May 12, 2022.
  268. ^ Overbye, Dennis (May 12, 2022). "The Milky Way's Black Hole Comes to Light". The New York Times. ISSN 0362-4331. Retrieved May 12, 2022.
  269. ^ Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way". Astrophysical Journal Letters. 930 (2): L12. Bibcode:2022ApJ...930L..12E. doi:10.3847/2041-8213/ac6674. hdl:10261/278882. S2CID 248744791.
  270. ^ Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric". Astrophysical Journal Letters. 930 (2): L17. Bibcode:2022ApJ...930L..17E. doi:10.3847/2041-8213/ac6756. hdl:10261/279267. S2CID 248744741.
  271. ^ Fletcher, Seth (September 2022). "Portrait of a Black Hole". Scientific American: 48–53. Archived from the original on September 25, 2022.
  272. ^ Overstreet, Chris; Asenbaum, Peter; Curti, Joseph; Kim, Minjeong; Kasevich, Mark A. (January 14, 2022). "Observation of a gravitational Aharonov-Bohm effect". Science. 375 (6577): 226–229. Bibcode:2022Sci...375..226O. doi:10.1126/science.abl7152. ISSN 0036-8075. PMID 35025635. S2CID 245932980.
  273. ^ Seigel, Ethan (January 18, 2022). "Has a new experiment just proven the quantum nature of gravity?". Big Think. Retrieved August 5, 2023.
  274. ^ Conover, Emily (January 13, 2022). "Quantum particles can feel the influence of gravitational fields they never touch". Science News. Retrieved August 5, 2023.
  275. ^ Hohensee, Michael A.; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Müller, Holger (June 7, 2012). "Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm Experiment". Physical Review Letters. 108 (23): 230404. arXiv:1109.4887. Bibcode:2012PhRvL.108w0404H. doi:10.1103/PhysRevLett.108.230404. ISSN 0031-9007. PMID 23003927. S2CID 22378148.
  276. ^ Ehrenstein, David (June 7, 2012). "The Gravitational Aharonov-Bohm Effect". Physics. 5: s87. Bibcode:2012PhyOJ...5S..87.. doi:10.1103/Physics.5.s87.
  277. ^ Garner, Rob (July 12, 2022). "NASA's Webb Delivers Deepest Infrared Image of Universe Yet". NASA. Retrieved January 2, 2023.
  278. ^ Dichiara, S.; Gropp, J. D.; Kennea, J. A.; Kuin, N. P. M.; Lien, A. Y.; Marshall, F. E.; Tohuvavohu, A.; Williams, M. A.; Neil Gehrels Swift Observatory Team (2022). "Swift J1913.1+1946 a new bright hard X-ray and optical transient". The Astronomer's Telegram. 15650: 1. Bibcode:2022ATel15650....1D.
  279. ^ Plait, Phil (January 2023). "The Brightest Gamma-Ray Burst Ever Recorded Rattled Earth's Atmosphere". Scientific American: 56–7.
  280. ^ Reddy, Francis (13 October 2022). "NASA's Swift, Fermi Missions Detect Exceptional Cosmic Blast". NASA's Goddard Space Flight Center.
  281. ^ Adams, N.J.; et al. (January 2023). "Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field". Monthly Notices of the Royal Astronomical Society. 518 (3): 4755–4766. arXiv:2207.11217. doi:10.1093/mnras/stac3347. Retrieved 2 January 2023.
  282. ^ Yan, Haojing; et al. (January 2023). "First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73". The Astrophysical Journal Letters. 942 (L9): 20. arXiv:2207.11558. Bibcode:2023ApJ...942L...9Y. doi:10.3847/2041-8213/aca80c.
  283. ^ Nightingale, James W.; et al. (May 2023). "Abell 1201: detection of an ultramassive black hole in a strong gravitational lens". Monthly Notices of the Royal Astronomical Society. 521 (3): 3298–332. arXiv:2303.15514. doi:10.1093/mnras/stad587.
  284. ^ "NASA Study Helps Explain Limit-Breaking Ultra-Luminous X-Ray Sources". NuSTAR. Retrieved 2023-04-24.
  285. ^ Bachetti, Matteo; et al. (October 2022). "Orbital decay in M82 X-2". The Astrophysical Journal. 937 (2): 125. arXiv:2112.00339. Bibcode:2022ApJ...937..125B. doi:10.3847/1538-4357/ac8d67. S2CID 251903552.
  286. ^ Zhang, S.-B.; Ba, Z.-L.; Ning, D.-H.; Zhai, N.-F.; Lu, Z.-T.; Sheng, D. (2023). "Search for Spin-Dependent Gravitational Interactions at Earth Range". Physical Review Letters. 130 (20): 201401. arXiv:2303.10352. Bibcode:2023PhRvL.130t1401Z. doi:10.1103/PhysRevLett.130.201401. PMID 37267553. S2CID 257631794.
  287. ^ Kimball, Derek F. Jackson (May 15, 2023). "Testing Gravity's Effect on Quantum Spins". Physics. Vol. 16, no. 80. American Physical Society (APS). Retrieved May 17, 2023.
  288. ^ Agazie, Gabriella; et al. (June 29, 2023). "The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background". The Astrophysical Journal Letters. 951 (L8): L8. arXiv:2306.16213. Bibcode:2023ApJ...951L...8A. doi:10.3847/2041-8213/acdac6. S2CID 259274684.
  289. ^ Antoniadis, J.; et al. (June 28, 2023). "The second data release from the European Pulsar Timing Array". Astronomy & Astrophysics. 678: A50. arXiv:2306.16214. doi:10.1051/0004-6361/202346844. S2CID 259274756.
  290. ^ Reardon, Daniel J.; et al. (June 29, 2023). "Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array". The Astrophysical Journal Letters. 951 (1): L6. arXiv:2306.16215. Bibcode:2023ApJ...951L...6R. doi:10.3847/2041-8213/acdd02. S2CID 259275121.
  291. ^ Xu, Heng; et al. (2023). "Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I". Research in Astronomy and Astrophysics. 23 (7): 075024. arXiv:2306.16216. Bibcode:2023RAA....23g5024X. doi:10.1088/1674-4527/acdfa5. S2CID 259274998.
  292. ^ Castelvecchi, Davide (June 29, 2023). "Monster gravitational waves spotted for first time". Nature. Retrieved June 29, 2023.
  293. ^ Lewis, Geraint F.; Brewer, Brendon J. (2023). "Detection of the cosmological time dilation of high-redshift quasars". Nature Astronomy. 7 (10): 1265–1269. arXiv:2306.04053. Bibcode:2023NatAs...7.1265L. doi:10.1038/s41550-023-02029-2. S2CID 259096065.
  294. ^ University of Sydney (July 3, 2023). "Quasar 'clocks' show Universe was five times slower soon after the Big Bang". Science Daily. Retrieved July 12, 2023.

External links[edit]