Talk:Michael addition reaction

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

It only mentions the Robinson annulation as a subsequent reaction. There is another fault, however, in that Michael Additions are not always between C and C. They can occur in thiols (recall Benzyl mercaptan + Allyl Maleimide).

That is not true. The addition of thiols to Michael acceptors is a conjugate addition, not a Michael addition. Eugene Kwan 11:46, 18 April 2006 (UTC) Only if you stick to the strict definition of Michael additions, which this article does not, since acrylonitrile is mentioned as an acceptor. All Michael additions are conjugate additions. Any distinction to be made needs to be made explicitly in the text. — Preceding unsigned comment added by 65.95.191.75 (talk) 03:24, 15 March 2012 (UTC)[reply]

I would also favour mention of the reverse reaction (retro-Michael). BTW, the "proline" is NOT proline and is missing an H on N. — Preceding unsigned comment added by 65.95.191.75 (talk) 03:31, 15 March 2012 (UTC)[reply]



in need of attention, this text describes the robinson annulation (part of aldol condensations) but and is not the actual Michael reaction, Wiki is served with a rewrite.

I might also wonder why it's called the "Michael" reaction? 68.39.174.238 14:21, 12 March 2006 (UTC)[reply]

see the article. Eugene Kwan 16:40, 12 March 2006 (UTC)[reply]

Rw[edit]

For reference, the mentioned sentences:
  1. Michael addition is an important method for alkylation.
  2. An α,β-unsaturated carbonyl compound which can undergo a Michael addition is called a Michael acceptor.
  3. Michael addition is often easier than the corresponding direct addition to carbonyl, giving selectivity.

I recommend that the changes I made be kept for the following reasons:

  • The Michael addition is not commonly thought of as an alkylation of the acceptor, but the nucleophile. If you reacted an enolate with methyl iodide, you wouldn't say that methyl iodide was being alkylated, would you? This may be up for debate. At any rate, the mechanism and details for the Michael addition are completely different than for typical enolate alkylations. Calling it an alkylation may be misleading.
  • The significance section is odd. First sentence: see above. Shouldn't we mention that asymmetric methods exist? If we're going to talk about the significance, why not discuss its applications? The second sentence is true, but has nothing to do with the significance. And I don't understan the third sentence at all. What does that mean?
  • The next paragraph: this is true, perhaps, but you give no examples, and in any case, it is unclear that the Michael acceptors are causing damage by Michael addition. Unless you can provide some reference, it should be removed. The definition of Robinson annulation is imprecise...I prefer the one I made. One could think of counterexamples which would fit the current definition but wouldn't be Robinson annulations. Eugene Kwan 11:54, 18 April 2006 (UTC)[reply]

I'm sorry to be so critical, but I find the recent changes have definitely deviated from what is commonly accepted chemistry terminology and usage. The term "conducts electricity" is unusual, and "becomes an alkoxide which reverts to something else" is much less precise than what was there before. Seeing as I actually do research into the Michael reaction myself, I think I should be acknowledged as the expert here. I'll be happy to make some more concrete changes shortly. Eugene Kwan 04:10, 24 April 2006 (UTC)[reply]

  • Whether or not we select the term "alkylation", it needs to be shown clearly that Michael reaction is not FGI. It involves an attack at a conjugate acceptor, which receives the alkyl group from the attacking nucleophile. I'm still a student so I can't authoritatively say if this is called alkylation.
  • I'm kind of missing the applications too. Especially the asymmetric ones. Sentence 2: You're right that the definition of Michael acceptor has to be moved to the definition(s) section. Sentence 3: I'm going to rewrite this, since it's not kinetic as suggested but thermodynamic selectivity. (E.g. take the simplest enone, and attack it with cyanide. The kinetic product is cyanohydrin, but the reaction is reversible; a slow, irreversible reaction gives the Michael product.)
  • DNA base nitrogens attack Michael acceptors. DNA base is alkylated, and useless. I'm adding the reference.
  • The mechanism is still a bit hard to read. Pointing out the fact that the conjugated system is essentially a conductor of electricity is just a start. (See also plastics with a metallic shine.) --Vuo 21:49, 25 April 2006 (UTC)[reply]



I think that this page and the conjugate addition pages need to be looked at together. This is a comprehensive page better written than Conjugate addition and perhaps much of this content could be migrated there, and Michael additions be explained as a smaller sub-set of conjugate additions. As far as I'm concerned Michael addition only includes carbonyl compounds, and not, for example, unsaturated nitros.

--Seansheep 00:18, 11 February 2007 (UTC)[reply]

Let's not get anal about names. I don't think historical accuracy in reaction naming is important. In common usage, all kinds of conjugate additions are often called Michael additions.


least motion: in the reaction, the nucleophilic carbon changes from sp2 to sp3. the reverse reaction would require a change from sp3 back to sp2. the "principle of least motion" says that reactions like that are unlikely. (Rice, F. O. Teller, E. J. Chem. Phys. 1938, 5, 489.) —Preceding unsigned comment added by E kwan (talkcontribs) 17:32, 25 October 2007 (UTC)[reply]

Linkage[edit]

In case someone wants to add it in properly: I think this is RSC:RXNO_0000009  :) --RProgrammer (talk) 03:55, 16 June 2020 (UTC)[reply]


Kohler[edit]

The reference

 Kohler. J. Am. Chem. Soc., 1907, 37, 385

does not exist. JACS 1907 is Vol. 29; JACS Vol 37 is 1915.

Presumably this is E.P. Kohler.

E.P. Kohler's first paper in JACS was in 1916. In that paper, [1], Kohler does state:

Although this paper deals only with the addition of nitroparaffins to benzalacetophenone, work now in progress shows that, under proper conditions, aliphatic nitro compounds combine quite generally with alpha-beta-unsaturated ketones, with many unsaturated esters, unsaturated nitriles, and even with unsaturated nitro compounds.

Michael is not mentioned.

Thus, I cannot find the reference to Kohler proposing a new definition of "Michael reaction".

Hansonrstolaf (talk) 12:42, 6 April 2021 (UTC)[reply]

Hello! It's been a while since you've brought this concern up, but I'm wondering if you had any luck finding a source to support this claim? I see the current "wrong" citation almost cited exactly the same in this paper [2] but I'm not seeing anything for it either. I want to do a deep-dive and try and find where this information came from, otherwise it may need to be taken off the page. Let me know if you have any input! Sach548 (talk) 05:29, 17 October 2022 (UTC)[reply]

Wiki Education assignment: CHEM 300[edit]

This article was the subject of a Wiki Education Foundation-supported course assignment, between 6 September 2022 and 7 December 2022. Further details are available on the course page. Student editor(s): Sach548, Elbert Ainsteinium, Kat3r1nayr (article contribs). Peer reviewers: Kmainse, Ymukohya, Kyall P, Greta Margaux, Chlorinetwist, Shionmoon.

— Assignment last updated by Tiff592 (talk) 00:21, 27 October 2022 (UTC)[reply]


Wiki Education assignment bibliography[edit]

October 10, 2022:

  • Brown, W.H., Iverson, B.L., Anslyn, & E., Foote, C.S. (2018). Organic Chemistry, 8th Edition. Cengage Learning. ISBN: 978-1-305-58035-0 [1]
    • This was our CHEM 203/213 textbook, so it should be reliable and provide a suitable base-line understanding of the Michael reaction
    • Note: automatic citation needs to be checked
  • Krishna, P.R., Sreeshailam, A., & Srinivas, R. (2009). Recent advances and applications in asymmetric aza-Michael addition chemistry. 65(47), 9657-9672. 10.1016/j.tet.2009.08.021[2]
    • This review article has been published under a well-known journal (Elsevier) so it should be a reliable source. It details the use of aza-Michael additions, and can be used to provide further detail on that subsection of the Michael reaction
    • There is no declaration related to conflict of interest
    • Note: automatic citation needs to be checked
  • Vinogradov, M.G., Turova, O.V., & Zlotin, S.G. (2019). Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions. 76(28-29), 3670-3708. 10.1039/c8ob03034k[3]
    • This review article has been published under a peer-reviewed journal (Organic and Biomolecular Chemistry), so it should be a reliable source. It provides a more recent review (compared to the second citation in this list) of stereoselective aza-Michael reactions. This review can be used to search retroactively search for examples of aza-Michael reactions.
    • The sources in this review article can be compared to the sources in the other review article (the second citation in this list) to evaluate the extent of information regarding aza-Michael reactions
    • The authors declare no conflict of interest.
    • Note: automatic citation needs to be checked, for the volume and issue numbers don't appear to be correct

References

  1. ^ Brown, William Henry (2018). Organic chemistry. Brent L. Iverson, Eric V. Anslyn, Christopher S. Foote (Eighth edition ed.). Boston, MA. ISBN 978-1-305-58035-0. OCLC 974377227. {{cite book}}: |edition= has extra text (help)CS1 maint: location missing publisher (link)
  2. ^ Krishna, Palakodety Radha; Sreeshailam, Aare; Srinivas, Ravula (2009-11). "Recent advances and applications in asymmetric aza-Michael addition chemistry". Tetrahedron. 65 (47): 9657–9672. doi:10.1016/j.tet.2009.08.021. {{cite journal}}: Check date values in: |date= (help)
  3. ^ Vinogradov, Maxim G.; Turova, Olga V.; Zlotin, Sergei G. (2019). "Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions". Organic & Biomolecular Chemistry. 17 (15): 3670–3708. doi:10.1039/C8OB03034K. ISSN 1477-0520.

Discussion has R" but diagram doesn't[edit]

The discussion in the first paragraph talks about the R" group but the diagram only has an R group and an R' group, with no R" group. 2600:1700:B8B0:2FE0:B08D:A457:B9CB:3D78 (talk) 18:45, 12 February 2024 (UTC)[reply]